1 / 17

Bab IV INTEGRAL

Bab IV INTEGRAL. Drs. Rachmat Suryadi , M.Pd. 4.0 Pendahuluan. Sifat 4.0.2: Misalkan f dan g mempunyai anti turunan dan k suatu konstanta, maka. 4.0 Pendahuluan. Teorema 4.0.3

corin
Download Presentation

Bab IV INTEGRAL

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bab IVINTEGRAL Drs. RachmatSuryadi, M.Pd

  2. 4.0 Pendahuluan Sifat 4.0.2: • Misalkan f dan g mempunyai anti turunan dan k suatu konstanta, maka Prepared by : Rachmat Suryadi

  3. 4.0 Pendahuluan Teorema 4.0.3 • Jika F dan G keduanya integral tak tentu dari f pada interval I, maka F(x) dan G(x) berselisih suatu konstanta pada I • Jadi F(x) – G(x) = C dengan C sembarang konstanta. Akibat 4.0.4 • Jika F suatu fungsi integral tak tentu dari f , maka ∫ f(x) dx = F(x) + C. dengan C konstanta sembarang. Prepared by : Rachmat Suryadi

  4. 4.1 RumusDasar Prepared by : Rachmat Suryadi

  5. 4.2 Integral denganSubsitusi Teorema 4.2.1 • Jika u = g(x) yang didefinisikan pada interval I mempunyai invers x = g –1(u) dan fungsi-fungsi g dan g –1keduanya mempunyai derivatif yang kontinu pada intervalnya masing-masing, dan f kontinu pada interval di mana g –1didefinisikan, • maka ∫ f{g(x )}g '(x) dx =∫ f(u) du Prepared by : Rachmat Suryadi

  6. 4.2 Integral denganSubsitusi Prepared by : Rachmat Suryadi

  7. 4.2 Integral denganSubsitusi Prepared by : Rachmat Suryadi

  8. 4.2 Integral denganSubsitusi Prepared by : Rachmat Suryadi

  9. 4.3 Integral Parsial Prepared by : Rachmat Suryadi

  10. 4.3 Integral Parsial Prepared by : Rachmat Suryadi

  11. 4.3 Integral Parsial Prepared by : Rachmat Suryadi

  12. 4.3 Integral Parsial Prepared by : Rachmat Suryadi

  13. 4.4 Integral Hasil = ArcTandan Log Prepared by : Rachmat Suryadi

  14. 4.4 Integral Hasil = ArcTandan Log Prepared by : Rachmat Suryadi

  15. 4.4 Integral Hasil = ArcTandan Log Prepared by : Rachmat Suryadi

  16. 4.4 Integral Hasil = ArcTandan Log Prepared by : Rachmat Suryadi

  17. 4.4 Integral Hasil = ArcTandan Log Prepared by : Rachmat Suryadi

More Related