1 / 17

OPTIMASI MULTIVARIABEL DENGAN KENDALA KESAMAAN

Fungsi kontinu  Min f(x) Kendala g j = 0, di mana j = 1, 2, ... m. Vektor R n , syarat m  n. OPTIMASI MULTIVARIABEL DENGAN KENDALA KESAMAAN. Penyelesaian dengan 3 cara :. Metode Substitusi Langsung a. nyatakan n variabel dengan (n-m) variabel lain

Download Presentation

OPTIMASI MULTIVARIABEL DENGAN KENDALA KESAMAAN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fungsi kontinu  Min f(x) Kendala gj = 0, di mana j = 1, 2, ... m Vektor Rn, syarat m  n ... OPTIMASI MULTIVARIABEL DENGAN KENDALA KESAMAAN

  2. Penyelesaian dengan 3 cara : • Metode Substitusi Langsung a. nyatakan n variabel dengan (n-m) variabel lain b. substitusikan m kendala ke fungsi tujuan, fungsi tujuan mengandung n-m variabel c. selesaikan optimasi n-m variabel tanpa kendala Contohnya

  3. = ½(4x1+2(1-2x1)(-2)) = 2x1-2(1-2x1) = 0  x1-(1-2x1)= 0  x1-1+2x1= 0  3x1= 1 x1= 1/3, x2= 1/3 x3= 1-2/3 = 1/3 = 2+4=6>0, f(1/3,1/3,1/3)= 1/6  Optimum Minimum Contoh: Minimumkan f(x1, x2, x3)= ½(x12+ x22+ x32) Kendala g1= x1- x2 = 0 g2= x1+x2+x3-1 Jawab: g1= 0 x1= x2 g2= 0 x1+x1+x3-1=0  x3=1-2x1 f(x1, x2, x3)= ½(x12+ x12+ (1-2x1)2)=½(2x12+(1-2x1)2) f(x1)

  4. 2. Metode Constrained Variation a. Untuk n = 2, m = 1 agar f(x1*, x2*) merupakan optimum x1*, x2* harus memenuhi ... ... b. Syarat perlu agar f(x*) merupakan optimum Contohnya

  5. Minimumkan f = 9-8x1- 6x2- 4x3+ 2x12+2x22+ x32+ 2x1 x2+2x1x3 Kendala x1+x2+2x3= 3 Jawab: n = 3, m = 1, Ambil y3 = x3, y2 = x2 sehingga y1= x1 k = m + 1 = 2 -6+4x2+ 2x1 -8+ 4x1+2x2+2x3 1 1 = -6+4x2+2x1+8-4x1-2x2-2x3 = 2+2x2+2x1-2x3 = 0 x1 – x2 + x3 – 1 = 0 ...(1) Lanjutkan

  6. k = m + 2 = 3 = n -4+2x3+2x1 -8+ 4x1+2x2+2x3 2 1 = -4+2x3+2x1+16-8x1-4x2-4x3 = 12-2x3-6x1-4x2 = 2(6-x3-3x1-2x2)= 0 3x1+2x2+x3-6= 0 ... (2) 3x1+2x2+x3-6 = 0 ... (2) x1 – x2+x3–1 = 0 ...(1) (-) 2x1+ 3x2 - 6 = 0 x2= 5 - 2x1 3

  7. x1 – x2+x3–1 = 0 x1 – +x3–1 = 0 3x1–5+2x1+3x3–3= 0 5x1+3x3– 8= 0 x1 – x2+2x2 = 3 x1 – +2 = 3 3x1 + 5 - 2x1 + 16 - 10x1 = 9 5 - 2x1 5 - 2x1 8 - 5x1 x3 = 8 - 5x1 9x1= 12 3 9 9 3 3 3 3 x1 = 4 ; x3 = 4 x2 = 7 ;

  8. < 0  max > 0  min Catatan: Metode tersebut juga berlaku untuk n variabel bebas dan m restriksi (n + m persamaan) 3. Metode Multiplikator Jika titik-titik ekstrem dari fungsi Z = f(x;y) harus ditentukan dengan restriksi (x;y)=0, maka berlaku persyaratan sebagai berikut: (x;y)=0; Penentuan Titik Ekstrem Contohnya

  9. Jawab : Xy – 9 = 0 2x + y + y= 0 x + 2y + x= 0 x1;2 =  3 y1;2 =  3 = - 3 Nilai ekstrem adalah P1 (3;3;27) & P2 (-3;-3;-27) Contoh: Fungsi Z = f(x;y) = x2 + xy + y2 Restriksi : (x;y) = xy – 9 = 0 Tentukan titik ekstrimnya!

  10. Oleh karena itu: Untuk P1 berlaku:  = 2*9 – 2(1-3)*3*3 + 2*9 = 72 > 0  Minimum Untuk P2 berlaku:  = 2*9 – 2(1+3)*(-3)*(-3) + 2*9 = -36 > 0  Maksimum Penentuan Jenis Titik Ekstrem :

  11. Metode Lagrange Prinsipnya adalah menambahkan satu variabel  • Syarat perlu agar f(x1*,x2*) merupakan jawaban masalah optimasi Minimasi f(x1*,x2*) Kendala g(x1,x2) = 0 adalah 

  12. Definit Positif Dimana i = 1, 2, ... n, j  0, j  ji J1 = kendala aktif J2 = kendala tidak aktif • Misalkan x suatu vektor masalah optimasi f(x) terhadap kendala g(x) = 0 didapat dengan f(x) = g(x), dan g(x) = 0 L(xi,) = f(xi) + g(xi) Vektor x, y memenuhi persamaan tersebut = titik kritis • Syarat cukup agar f(x*) merupakan minimum relatif • Optimasi multivariabel dengan kendala pertidaksamaan • Prinsipnya adalah menambah variable slack tak negatif yj2 sehinggaminimum f(x) dan kendala gj(x)  0, j = 1, 2, ... m menjadi Gj(x,y) = gj(x) + yj2 = 0, j = 1, 2, ... m • Titik x* dimana f(x*) minimum dengan syarat Kuhn-Tucker

  13. , i = 1, 2, ... n , j = 1, 2, ... m , j = 1, 2, ... m , j = 1, 2, ... m Jika kumpulan kendala aktif tidak diketahui, maka: Contoh: • Minimasi f(x1, x2, x3) = x12+x22+ x3+40x1+20 x2-3000 • Kendala g1= x1-50  0 • g2= x1+x2-100  0 • g3= x1+x2+x3-150  0

  14. Syarat Kuhn-Tucker • 2x1+40+ 1+ 2+ 3 = 0 2x2+20+ 2+ 3 = 0 2x3+ 3 = 0 jgj = 0, j = 1, 2, 3 • 1(x1-50) = 0 2(x1+x2-100) = 0 3(x1+x2+x3-150) = 0 j  0, j = 1, 2, 3, 1  0, 2  0, 3  0 Dari 1(x1-50) = 0  1 = 0 atau x1 = 50 Contoh: • Minimasi f(x1, x2, x3) = x12+x22+ x3+40x1+20 x2-3000 • Kendala g1= x1-50  0 • g2= x1+x2-100  0 • g3= x1+x2+x3-150  0

  15. (i) Jika x1 = 50  2x1+40+ 1+ 2+ 3 = 0 2x2+20+ 2+ 3 = 0 2x3+ 3 = 0 • 3 = -2x3 2 = -20-2x2-3 = -20-2x2+2x3 1 = -40-2x1-2-3 = -120+2x2 Substitusi: 2(x1+x2-100) = 0 3(x1+x2+x3-150) = 0 Sehingga: (-20-2x2+2x3)(x1+x2-100) -2x3 (x1+x2+x3-150) = 0 • -20-2x2+2x3 = 0, x1+x2+x3-150 • -10-x2+x3 = 0 • 50+x2+x3-150 = 0 • 90-2x2= 0 • x2= 0 • x1= 50, x2= 45 melanggar x1+x2 100 x3 = 150-x1-x2 x3 = 150-50-45 = 55 x1= 50, x2= 45, x3 = 55 Sistem ini mempunyai 4 jawaban, yaitu: -

  16. 3= -2x3 = 100, 2= -20-100+100= -20, 1= -120+100 = -20 • 1= -20, 2= -20, 3= -100 x1= 50, x2= 50, x3= 50 Sehingga titik optimum : x1*= x2* = x3* = 50 • 2. -20-2x2+2x3 = 0, -2x3 = 0  x3 = 0, x2 = -10 • x1= 50, x2= -10, x3 = 0, melanggar x1+x2  100 • x1+x2-100 = 0, -2x3 = 0  x3 = 0, 50+x2 = 100  x2 = 50 • x1= 50, x2= 50, x3 = 0, melanggar x1+x2+x3  150 • x1+x2-100 = 0, x1+x2+x3 – 150 = 0 • 50+x2 = 100, 50+50+x3 =150 • x2 = 50 x3 = 50 • x1= 50, x2= 50, x3 = 50 Jawaban ini memenuhi kendala

  17. 2. Maksimumkan f(x1, x2) = x1x2, x1>0, x2>0 Kendala g(x1,x2)= x12+x22-4 = 0 Jawab: L(x1,x2,) = x1x2 + (x12+x22-4) (1) dan (2) -x2/x1 = -x1/x2 x22 = x12 (3) x12+x22-4 = 0 2x12 = 4 x12 = 2 x1 = 2, x2 = 2  = 1/2

More Related