1 / 22

Puntos de corte con los ejes

{. x=-1 x=1 x=2. f(0)=2. Puntos de corte con los ejes. Consideramos la función f(x) =x 3 -2x 2 -x+2. Con el eje OX. Resolvemos la ecuación x 3 -2x 2 -x+2=0. Puntos de cortes (-1,0) (1,0) (2,0). Con el eje OY. Calculamos f(0). Punto de corte (0,2). d. d. x. -x. x=0.

denali
Download Presentation

Puntos de corte con los ejes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. { x=-1 x=1 x=2 f(0)=2 Puntos de corte con los ejes Consideramos la función f(x) =x3-2x2-x+2 Con el eje OX Resolvemos la ecuación x3-2x2-x+2=0 Puntos de cortes (-1,0) (1,0) (2,0) Con el eje OY Calculamos f(0) Punto de corte (0,2)

  2. d d x -x x=0 Simetrías axiales: Funciones pares Consideramos la función f(x) = x4-2x2 La función es simétrica respecto del eje Y. Por tanto, f(-x) = (-x)4-2(-x)2 = x4-2x2 = f(x) Una función que presenta este tipo de simetría se denomina función par.

  3. d d x -x Simetrías centrales: Funciones impares Consideramos la función f(x) = x3-x La función es simétrica respecto del origen de coordenadas. Por tanto, f(-x) = (-x)3-(-x) = -x3+x = -f(x) Una función que presenta este tipo de simetría se denomina función impar.

  4. período = T período = T 3 2 1 0 x x + T 10,35 10,15 10,30 11,45 11,15 10,45 11 Función periódica Una función f(x) es periódica de período T si existe un número real T  0, llamado período, tal que f(x) = f(x + T), para todo x de su dominio.

  5. Dominio Recorrido Recorrido Dominio Funciones polinómicas Se llama función polinómica a las funciones f(x) = anxn + an-1xn-1 + ... + a1x + ao donde an, an-1, ..., ao son números reales, n es un número natural, y an 0. En este caso se dice que tenemos una función polinómica de grado n. Las funciones f(x) = xn para n = 1, 2, 3, ..... f(x) = x2 f(x) = x4 f(x) = x5 f(x) = x3

  6. Recorrido: R Recorrido: R Dominio: R Dominio: R Funciones lineales Las funciones de la forma y = ax + b, donde a, b R se llaman funciones lineales. • (0, b): ordenada • en el origen • (0, b): ordenada • en el origen f(x) = ax + b, a > 0 f(x) = ax + b, a < 0 Una función lineal queda determinada cuando se conocen las imágenes de dos valores distintos de la variable independiente.

  7. Funciones cuadráticas Son funciones de la forma y = ax2 + bx + c, donde a  0, b, c  R • Funciones y = ax2 para diferentes valores de a: • Son parábolas • Dominio: R • Si a > 0: Recorrido = [0, ) • Si a < 0: Recorrido = (–, 0] a =2 a =1 a = 0,5 a = – 2 a = – 1 a = – 0,5

  8. Representación gráfica de funciones cuadráticas f(x) = ax2 + bx + c, a0 es una parábola • V a > 0 a < 0 • V

  9. Gráficas de funciones: monotonía y curvatura Funciones polinómicas de segundo grado: f(x) = ax2 + bx + c (I) • a > 0 • convexa • ramas hacia arriba • mínimo en el vértice • a < 0 • cóncava • ramas hacia abajo • máximo en el vértice Coordenadas del vértice: (–b/(2a), f(–b/(2a)) Eje de simetría: x = –b/(2a)

  10. Gráficas de funciones: monotonía y curvatura b2 – 4ac < 0  no corta al eje OX Punto de corte con el eje OY: (0, c) Funciones polinómicas de segundo grado: f(x) = ax2 + bx + c (II) b2 – 4ac > 0  corta al eje OX en dos puntos b2 – 4ac = 0  corta al eje OX en un punto

  11. Representación gráfica de algunas funciones polinómicas Grado 3 Grado 4 Grado 5 Grado 6

  12. Tipo 1: punto de inflexión cóncavo–convexo a > 0 • I • Sin máximos ni mínimos relativos y un solo punto de inflexión. • Cortan al eje OX en un solo punto y al eje OY en un solo punto. Funciones polinómicas de tercer grado: f(x) = ax3 + bx2 + cx + d (I) • I Tipo 2: punto de inflexión convexo–cóncavo a < 0

  13. M a > 0 Tipo 3: Máximo–mínimo • I • Con un máximo y un mínimo relativos y un solo punto de inflexión. • Cortan al eje OY en un solo punto. • Pueden cortar al eje OX en 3, 2 ó 1 punto. • m Funciones polinómicas de tercer grado: f(x) = ax3 + bx2 + cx + d (II) • M • I Tipo 4: Mínimo–máximo a < 0 • m

  14. M a > 0 Tipo 3: Máximo–mínimo • I • Con un máximo y un mínimo relativos y un solo punto de inflexión. • Cortan al eje OY en un solo punto. • Pueden cortar al eje OX en 3, 2 ó 1 punto. • m Funciones polinómicas de tercer grado: f(x) = ax3 + bx2 + cx + d (II) • M • I Tipo 4: Mínimo–máximo a < 0 • m

  15. – 1 1 Funciones racionales Una función racional es una función cociente de dos funciones polinómicas; es decir, f(x) = P(x)/Q(x), donde P(x) y Q(x) son dos polinomios. + + x + 1 – + x + 1 – – • Dominio: conjunto de todos los números reales excepto los que anulan al denominador. Por tanto para hallar el dominio hay que resolver la ecuación Q(x) = 0. + f(x) + – Las asíntotas de la función f(x) = 1/(x2 - 1) y los cambios de signo en su dominio.

  16. Funciones exponenciales Una función exponencial es una función de la forma f(x) = ax, siendo x la variable y a un número real. • Dominio: R. Recorrido: (0, ) • Las gráficas de todas las funciones exponenciales pasan por el punto (0, 1). f(x) = ex f(x) = e– x = (1/e)x f(x) = 2x f(x) = 2– x = (1/2)x 0 < a < 1 a > 1

  17. Funciones logarítmicas Una función logarítmica es una función de la forma f(x) = loga x, siendo x la variable y a un número real mayor que 0 y distinto de 1. • Dominio: (0, ). Recorrido: R • Las gráficas de todas las funciones logarítmicas pasan por el punto (1, 0). • Es inversa de la exponencial: sus gráficas son simétrica respecto y = x. f(x) = ax f(x) = ax f(x) = loga x f(x) = loga x 0 < a < 1 a > 1

  18. y = 1 y = –1 Función seno -3p -5p/2 -2p -3p/2 -p -p/2 0 p/2 p 3p/2 2p 5p/2 3p • Propiedades de la función seno: • Su dominio que es R. • Su recorrido es el intervalo [–1, 1]. • Es periódica de período 2p. • Es una función impar: sen (– x ) = sen x.

  19. y = 1 y = –1 Función coseno -3p -5p/2 -2p -3p/2 -p -p/2 0 p/2 p 3p/2 2p 5p/2 3p y = cos x y = sen x • Propiedades de la función coseno: • Su dominio es R. • Su recorrido es el intervalo [–1, 1]. • Es periódica de período 2p. • Es una función par: cos (– x ) = cos x.

  20. Función tangente -2p -3p/2 -p -p/2 0 p/2 p 3p/2 2p • Propiedades de la función tangente: • Su dominio es R – {p/2 + kp: k Z}. • Su recorrido es toda la recta real. • Es periódica de período p. • Las recta x = p/2 + kp, k Z son asíntotas verticales. • Es una función impar: tan (– x ) = – tan x.

  21. p/2 1 –1 –p/2 p/2 1 – 1 – p/2 Función arco seno La función sen x es inyectiva en [–p/2, p/2]. En ese intervalo tendrá inversa: f(x) = arcsen x. Las gráficas de ambas funciones son simétricas respecto a la recta y = x. y = arcsen x y = sen x 0 y = x • Propiedades de la función arco seno: • Su dominio es [–1, 1]. • Su recorrido es el intervalo [–p/2,p/2].

  22. p/2 p/2 p/2 p/2 La función tan x es inyectiva en [p/2, p/2]. En ese intervalo tendrá inversa: f(x) = arctan x. Las gráficas de ambas funciones son simétricas respecto a la recta y = x. Función arco tangente y = tan x 0 y = arctan x y = x • Propiedades de la función arco tangente • Su dominio: R. • Su recorrido es el intervalo [p/2,p/2].

More Related