620 likes | 703 Views
Explore the fascinating journey of cell division, DNA replication, and chromosome dynamics in this informative guide. Delve into the intricate processes that govern life at a cellular level. Discover the essential mechanisms that drive growth and ensure cell survival. Unravel the mysteries of mitosis and meiosis, and grasp the significance of DNA structure and replication. Get insights into the cell cycle stages, protein synthesis, and organelle production. Dive deep into the world of genetics and understand the role of chromosomes, genes, and alleles. Enhance your knowledge of cell division through a comprehensive exploration of mitosis phases. Uncover the secrets of cell reproduction and the intricate dance of chromosomes during division. Get ready to decode the intricate world of cell biology and unravel the mysteries of life at the cellular level.
E N D
Cell Growth and Division: Mitosis vs. Meiosis and What’s going on the rest of the time
Why does a cell need to divide? • A little geometry: As an object grows, the volume increases at a faster rate than the surface area
The same happens with a cell • What is the surface area? • What is the volume? • The more cytoplasm there is the more materials are needed. • How do the materials enter?
Oh no… diffusion is back! • By limiting the ratio of membrane to cytoplasm you limit the “doorways” into the cell. • Cell can’t get enough materials to support its large size • Cell dies, unless it divides in half!
What do our cells need to do before they can divide? • Get bigger • Make another copy of DNA • Make more organelles
Cell Cycle G1 – growth and protein synthesis S – DNA replication (copying the DNA) G2 – Make organelles M – Mitosis (Nuclear division) and Cytokinesis – division of cytoplasm and membrane
What is DNA again? • A Chain of nucleotides • Twisted into a double helix (spiral) • VERY LONG • Contains ALL the recipes for every protein our body needs • Recipes are called genes
Understanding DNA structure • Most of the time out DNA is in the form of chromatin: strings of DNA wrapped around proteins called histones
Understanding DNA structure • DNA is in chromatin form through G1. • In S phase, each strand of chromatin is duplicated and the duplicated copies remain attached together at the centromere.
Understanding DNA structure • During M phase the chromatin is folded into chromosomes • DNA remains in chromosome form until cell division is over
Remember DNA contains the information needed to build an organism • Each chromosome contains some of the information. • Each organism has a specific number of chromosomes.
Humans have 23 types of chromosomes and 2 of each type = total of 46 chromosomes • One of each type came from your mom the other from your dad. • Every cell in your body has all 46 chromosomes with the exception of egg/sperm cells
Cells that contain two of each chromosome are called Diploid cells • Cells that contain one of each chromosome are called Haploid cells
Chromosome Analogy • Think of the Information in a cell as an Encyclopedia - Each chromosome is one book • Haploid = one set of info / one encyclopedia A B C D E
Chromosome Analogy Diploid = two different sets of info/ two different encyclopedias! A B C D E A B C D E
A B C D E A B C D E Chromosome Analogy • Genome = total information in cell • If a cell is haploid, the genome consists of all the information in one encyclopedia • If Diploid, all the info in both encyclopedias
Chromosome Analogy • Chromosome = One volume • Genes: segments of DNA; each contains a specific message • Genes are like Articles in encyclopedia A F jkasdkfjh Jadlfl he; Kjadh fchw Laksjdfh Kasjdf;aj Skdjfa;ie F jkasdkfjh Jadlfl he; Kjadh fchw Laksjdfh Kasjdf;aj Skdjfa;ie
Chromosome Analogy • Genes can have different variations. The variations are called Alleles. • Think of the alleles as two different articles on the aardvark! A F jkasdkfjh Jadlfl he; Kjadh fchw Laksjdfh Kasjdf;aj Skdjfa;ie F jkasdkfjh Jadlfl he; Kjadh fchw Laksjdfh Kasjdf;aj Skdjfa;ie
Chromosome Analogy • Homologous Chromosomes : • Contain same genes, but may contain different alleles • Example: both might contain Hair color gene but one might have brown hair info the other blonde • One from Mom, one from Dad
Chromosome Analogy • Homologous Chromosomes = Volume “A” from each encycl. A A HomologousChromosomes
Chromosome Analogy When DNA duplicates itself before cell division it makes two identical copies of each of chromosome Identical Copies are Sister Chromatids SisterChromatids SisterChromatids A A A A
Single, unduplicated Chromosome 1 duplicated chromosome, 2 sister chromatids 2 separated chromatids become individual chromosomes
Centromere Telomeres
Mitosis • One Fluid Event; no stopping and starting. • BUT: for ease of study, we break it into 4 stages • REMEMBER: all phases are continuous and may, in part, overlap
1. Prophase • Longest phase of Mitosis • Chromatin folds up into Chromosomes which can now be seen
1. Prophase • Centrosomes separate and move toward opposite poles • These are parts of the cell that make microtubules
1. Prophase • Centrosomes start to form the Mitotic spindle • Made of microtubules
1. Prophase • Nuclear membrane breaks down • Nucleolus disappears
2. Metaphase • Chromosomes line up along equator • Spindle fibers attach to the centromeres of chromosomes
3. Anaphase • Centromeres connecting sister chromatids separate and one chromatid of each chromosome moves toward each poles
4. Telophase • Chromosomes begin to unwind back into chromatin • Nuclear Envelope reforms around chromosomes • Spindle breaks down • Nucleolus reappears
Cell Division is not yet Done!! • What have we made? • One Cell with Two complete Nuclei What is left to do? - Cytokinesis: Divide the cytoplasm and separate the cells
Cytokinesis • Animal cells: Membrane pinches inward forming a Cleavage Furrow until it divides the cytoplasm into two equal parts
Cytokinesis • Plant cell: Cell plate forms in the middle of the cytoplasm and extends toward the edges. Cell wall forms from this cell plate
Cell division is done! • Now you have Two Identical daughter cells
Controlling Cell Division • Cells know when they need to divide • When? • During growth • Repair – injury • Replacement (cells are not immortal!)
Controlling Cell Division • Cells know when they don’t need to divide • Cells stop when they reach other cells
How do cells “know”? • Cells communicate by releasing molecules • To control cell division cells release proteins called “cyclins” • Some cyclins are “Go” signals • Trigger the cell division process • Some cyclins are “Stop” signals • shut down the cell division process
Loss of control • What happens if the control signals don’t work?!? • cells divide uncontrollably • Pile up on top of each other • Form big balls of cells called????? • TUMORS!!!
Tumors • Tumor cells do not respond to (or do not have) the body’s control signals • missing a “stop” signal so cell division doesn’t stop • Hyperactive “go” signal so cell is constantly dividing
Tumors Vs. Cancer • Tumor = uncontrolled but isolated growth of cells • Tumor cells become cancer when they start to invade healthy tissue • What if 1 cancer cell breaks off and enters the blood stream? • Where ever it “lands” = new tumor = metastasis
That’s how Somatic (or body) cells divide! • What would happen if we made Egg and Sperm cells this way? • Way too much DNA • What do we have to do when forming these cells? • Reduce the amount of DNA
Meiosis • Happens ONLY in sex cells • Reduces information by ½ • Requires two different divisions • How many cells at the end??
Meiosis begins the same as Mitosis • Cell in G1 enters S phase. • ALL DNA is copied • Chromatin folds up to form 46 duplicated chromosomes
Meiosis I Prophase I - homologous chromosomes pair up forming tetrad; 4 chromatids together;
Meiosis I Prophase I - Centrosomes separate to poles - Nuclear envelope breaks down
Meiosis I Prophase I - Crossing occurs between homologous chromosomes