1 / 26

Induktive Statistik: Regressionsanalyse

Induktive Statistik: Regressionsanalyse. Regression -> Output. analysieren/Regression/Linear; abhängige & unabhängige Variable einfügen/ OK. zu erklärende Variable erklärende Variablen Regressionskoeffizient b t-Werte p-Wert R² F-Wert

donat
Download Presentation

Induktive Statistik: Regressionsanalyse

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Induktive Statistik: Regressionsanalyse

  2. Regression -> Output • analysieren/Regression/Linear; abhängige & unabhängige Variable einfügen/ OK • . • zu erklärende Variable • erklärende Variablen • Regressionskoeffizient b • t-Werte • p-Wert • R² • F-Wert • Anzahl der Beobachtungen N: df: Freiheitsgrade

  3. OrdinaryLeastSquare-Regression • statistische Zusammenhänge zwischen zwei oder mehreren Variablen • univariate OLS-Regression: nur eine erklärende Variable in der Schätzgleichung • Schätzgleichung:y = a+bx+e y: zu erklärende Variable a: Schnittpunkt mit y-Achse bzw. vertikaler Achsenabschnitt: „Konstante“, d.h. der Wert der abhängigen Variable, bei dem alle unabhängigen Variablen = 0 b: Steigung der Regressionsgerade (Regressionskoeffizient): • Wert besagt, um wie viel sich die AV verändert (+/-), wenn die UV um 1 Einheit steigt • positive/ negative Steigung entspricht einem positiven/ negativen Zusammenhang x: erklärende Variable

  4. OLS-Regression e: Fehlerterm = Residuen = unerklärte Abweichungen von einer möglichen Regressionsgeraden • diese werden quadriert, so daß größere Abweichungen stärker gewichtet werden • OLS: Lage der Regressionsgerade derart, daß die Summe der Quadrate aller Abweichungen der Punkte von der Geraden minimiert werden => Minimierung des Fehlerterms e²(d.h. der Summe der quadrierten Fehler): macht z.B. SPSS • je niedriger die Summe von e² relativ zur Gesamtvarianz der zu erklärenden Variable, desto besser das Modell • positive oder negative Korrelation: wachsenden x-Werten entsprechen steigende y-Werte oder umgekehrt • mögliches Problem: Scheinkorrelation: nicht meßbare Variablen beeinflussen erklärende und zu erklärende Variablen

  5. OLS-Regression: Annahmen 1. e ist normalverteilt (sonst Fehlspezifikation) • Überprüfung: Analysieren/ Regression/ Linear; Abhängige & unabhängige Variable einfügen & zusätzlich unter Speichern: Residuen Nicht standardisiert ankreuzen/ Weiter/ OK • im Dateneditor erscheinen nun die Residuen als neue Variable res_1 (bei weiteren Regressionen mit fortlaufender Nummer) • mit dem Kolmogorov-Smirnov-Test die Residuen auf Normalverteilung überprüfen: Analysieren/ Nichtparametrische Tests/ K-S bei einer Stichprobe/ Testvariablen/ res_1 2. E(e)=0 (kein systematischer Einfluß des Störterms auf y)

  6. OLS-Regression: Annahmen II 3. var(e)=constant (Homoskedastie der Residuen ) 4. cov(eiet)=0 (Residuen korrelieren nicht miteinander) 5. cov(xiet)=0 (Residuen korrelieren nicht mit exogenen Variablen) • bei Verletzung der Annahmen führt die OLS-Methode zu Schätzfehlern • aber: Überprüfung der Variablen auf Schiefe und Umformung schließt viele Fehler aus

  7. Präzision einzelner Regressionskoeffizientenund t-Wert • da die Residuen einer zufällig gezogenen Störvariable entsprechen, würden wir bei einer erneuten Ziehung andere Werte für die abhängige Variable erhalten, damit könnte sich auch der berechnete Regressionskoeffizient ändern • Wie verläßlich ist dieser also? Erste Ziehung Zweite Ziehung b < b • Überprüfung der Signifikanz der Regressionskoeffizienten anhand sog. t-Werte • zeigt an, ob eine einzelne Variable einflußreich • wenn > 2 => signifikanter Unterschied: d.h. es gibt Zusammenhang • +/-: positiver/ negativer Zusammenhang

  8. OLS-Regression: Güte des ModellsBestimmtheitsmaß R² • Güte einer Schätzung läßt sich mit Hilfe des Bestimmtheitsmaßes R² bestimmen • Interpretation: Anteil der durch das Schätzmodell erklärten Varianz an der Gesamtvarianz der abhängigen Variablen • 0< R²<1  je näher an 1, desto besser das Modell; die Angabe von R² in der Regressionstabelle ist notwendig • das R² * 100 wird im Text als Prozent interpretiert (R²=0,65: „mit dem Modell können 65% der Varianz erklärt werden“ • Vorteil von R2: Werte verschiedener Grundgesamtheiten können direkt miteinander verglichen werden • Angabe von R² ist immer notwendig! • adjustiertes R² bei Modellen mit mehreren Variablen (s. multiple Regression)

  9. OLS-Regression: Signifikanz • zur Angabe der Signifikanz • entweder Verwendung des „p-Werts der Signifikanz“ • oder anhand der t-Statistik (Daumenregel: ist t-Wert betragsmäßig größer als 2, dürfte der p-Wert kleiner als 0,05 sein) • p-Wert: Maßzahl für Signifikanz: • ermöglicht Beurteilung, wie „systematisch“ (Unterschiede) eine(r) UV eine AV beeinflußt • bzw.: Wie wahrscheinlich ist es, daß ein Zusammenhang besteht zwischen exogenen und endogener Variablen? • eigentlich: Test, ob bzw. wie hoch die Fehlerwahrscheinlichkeit, daß der Koeffizient oder die Konstante ungleich Null sind, und daher allgemeinere Schlüsse aus dieser Stichprobe gezogen werden dürfen

  10. OLS-Regression: Signifikanz II • Signifikanzniveau/ Sicherheitsniveau: wenn p-Wert < 0,01 oder 0,05 oder 0,1 => signifikanter Einfluß der UV: auf 1%, 5% oder 10%-Level • „besser“, desto näher an Null • aber: Wahl des Signifikanzniveaus kann von der Meßqualität der Daten abhängig gemacht werden • Z.B.: 1%-Niveau: Wahrscheinlichkeit von 99%, daß signifikanter Koeffizient einflußreich ist, Irrtumswahrscheinlichkeit: 1%

  11. OLS-Regression: Streudiagramm • nur für univariate Regression • rechtwinkliges Koordinatensystem: Streudiagramm – linearer, nichtlinearer oder kein Zusammenhang • abhängige (=zu erklärende, endogene) Variable: wird auf der y- Achse abgetragen (z. B.: Körpergröße) erklärende (=exogene, unabhängige) Variable: wird auf der x-Achse abgetragen (z. B.: Zeit) • Graphiken/ Streudiagramm/ Einfach Definieren/ erklärende Variable in x-Achse & zu erklärende Variable in y-Achse/ (Fallbeschriftung) / OK • Einfügen der Regressionsgeraden • 2X auf Streudiagramm klicken, führt zum Grafikeditor; darin auf Diagramme/ Optionen/ Kreuz bei Anpassungslinie gesamt/ OK • Veranschaulichung der Zusammenhänge zwischen UV & AV

  12. OLS-Regression:Einflußreiche Ausreißer • Verteilung der Beobachtungen: Berücksichtigung möglicher Ausreißer => verschiedene Streudiagramme identifizieren einflußreiche Ausreißer • Def.: Beobachtungen, die von den mittleren 50% der Werte mehr als drei mal dieser Distanz entfernt liegen (Daumenregel) • Regressionsgerade reagiert möglicherweise sehr sensitiv auf Ausreißer • Lösung: Regression mit und eine ohne Ausreißer durchführen und Veränderung der Regressionskoeffizienten betrachten • Ergebnisse, die auf Ausreißern basieren, sind unglaubwürdig • Ausreißer raus!

  13. Multiple Regression • mehrere erklärende Variable im Schätzmodell • große Stärke der Regressionsanalyse: es können Einflüsse von mehreren erklärenden Variablen geschätzt werden • graphisch kaum vorstellbar • wichtig: statistische Kennzahlen und Tests, die Hinweise auf ein korrektes Schätzmodell geben, richtig auszuwerten (z.B. die bereits erwähnten p-Werte)

  14. Multiple Regression undkorrigiertes R2 • das „adjustierte R²“ ist hier ein besseres Maß für den Erklärungsanteil des Modells • es ist so konstruiert, daß es sinkt, wenn viele nicht erklärungskräftige Variablen mitberücksichtigt werden • bei Modellen mit mehreren Variablen, nimmt der Erklärungsanteil mit der Anzahl der erklärenden Variablen zu • Extremfall: für jede Beobachtung gibt es eine erklärende Variable • R²=1 • normales Bestimmtheitsmaß ist nicht mehr aussagekräftig • Anpassung um die Anzahl der erklärenden Variablen v • Modelle mit höherem R²adj sind vorzuziehen, auch wenn R² kleiner ist • wenn R²adj nach Variablenausschluß stark reduziert • Kolliniarität übersehen

  15. Multiple Regressionen: Sensitivitätsanalyse • wie robust sind die Ergebnisse bei geringfügigen Änderungen in der Modellspezifikation? • Ergebnisse sind unglaubwürdig, falls sich Vorzeichen und Signifikanz der Koeffizienten durch geringfügige Änderungen stark ändern • Aufnahme und Ausschluß von zweifelhaften Variablen und Betrachtung der Auswirkung auf die Schlüsselvariablen

  16. Multiple Regressionen: Teststrategie • Vorgehensweise nach dem Grundsatz „general to specific modelling“, um Verzerrung der Regressions-koeffizienten durch unberücksichtigte Variablen zu vermeiden • zuerst umfassendes Modell mit allen Variablen schätzen, die auch rivalisierende Erklärungen einschließen • dann: insignifikante Variablen aus dem Modell ausschließen: allmählich zum „wahren“ Modell vorarbeiten (hier Multikollinearität möglich) • notwendig: Überprüfung, ob die Annahmen der OLS-Schätzmethode erfüllt sind

  17. Multikollinearität • Def.: Vorhandensein von Kollinearitäten (Abhängigkeiten) zwischen den erklärenden Variablen • in multiplen Regressionsmodellen treten aber fast immer (schwache) Abhängigkeiten zwischen den UV auf • OLS-Schätzungen bleiben unverzerrt • bei starker Multikollinearität kann Variabilität der Koeffizienten- schätzung zunehmen: d.h. schon mit einer geringfügig anderen Modellspezifikation ganz andere Schätzergebnisse möglich

  18. Multikollinearität II • „täuschende“ Insignifikanz bei einer oder mehreren UV möglich => Einfluß einer UV wird übersehen (bei geringen t-Werten) • Auslassen von Variablen mit niedrigen t-Werten kann zu einer Verzerrung der anderen Schätzer führen • Interpretation der Regressionskoeffizienten gestaltet sich schwieriger • aber: R² nicht betroffen • Überprüfung der Kollinearitäten hilfreich, um die Ergebnisse richtig einschätzen zu können

  19. Bestimmung von Multikollinearität • oft als erste Approximation: Überprüfung der Korrelationskoeffizienten => Schwankungen nach Ausschluß von Variablen die in engem Zusammenhang mit Schlüsselvariable • Bestimmung von Multikollinearität: z.B. mit Variance Inflation Factor (VIF): Werte > 10 deuten auf Multikollinearität (z.B. in SPSS im Regressionsfenster unter „Statistiken“ die Option „Multikollinearitätsdiagnose“ aktivieren) • Daumenregel: kein Problem, wenn R2 > R2 irgendeiner UV auf die anderen UV, oder wenn alles signifikant

  20. Dummy-Variablen • auch Indikator-/ und Kategorienvariablen • qualitative Variablen, die keine Ordnung im mathematischen Sinne angeben • Dummies bei 2 Kategorien: nehmen nur Werte 0 oder 1 an, z.B. x=1, falls Mann & x=0, falls Frau oder x=1, falls zum Römischen Reich gehörig & x=0, falls sonstige Dummy-Variablen können auch zwischen unterschiedlichen Zeitspannen trennen: z.B. 1500-1550=0, 1551-1600=1

  21. Interaktionsterme • um den Einfluß einer Interaktion zwischen zwei Dummyvariablen zu schätzen, werden diese miteinander multipliziert • ergibt eine neue Dummyvariable: mit • Wert=1 falls Zugehörigkeit zu beiden Ausgangskategorien • Wert=0, falls Zugehörigkeit zu einer oder keiner der beiden Ausgangskategorien • in SPSS: transformieren -> berechnen... • zugehöriger Regressionskoeffizient besagt ob eine Kombination der Charakteristika signifikant unterschiedlich ist von einer bloßen Addition der Koeffizienten der Ausgangsdummies

  22. Dummy-Variablen II • Dummies bei mehr als 2 Kategorien: insbes. bei mehreren Möglichkeiten qualitativer Charakteristika: z.B. • Ständegesellschaft:1.Stand/ 2.Stand/ 3.Stand • Region: Nordosteuropa/ Zentraleuropa/Südeuropa usw. • mehr Dummies: z.B. Ständegesellschaft: stand1=1, falls 1.Stand/sonstige Kategorien stand1=0 stand2=1, falls 2. Stand/sonst stand2=0 stand3=1, falls 3. Stand/sonst stand3=0 • Vorteil: Kategorien lassen sich unterscheiden, ohne daß Anzahl der Beobachtungen in separaten Regressionen reduziert wird => Präzision der Regressionskoeffizienten bleibt erhalten

  23. Homoskedastie • Varianz der Residuen var(e)=konstant

  24. y y=a+bx a x3 x2 x1 x Heteroskedastie • keine konstante Varianz der Residuen (graphische Überprüfung: Trichterform!) • Regressionskoeffizienten werden weiterhin unverzerrt geschätzt • auf diesen basierende Konfidenzintervalle sind un- gültig: t-Werte falsch geschätzt x • OLS-Schätzmethode nicht länger effizient

  25. Heteroskedastie II • Überprüfung durch ‚Modifizierten White-Test‘ • vereinfacht: Residuen werden quadriert, um festzustellen, ob ‚Trichterform‘ signifikant e² =c+d1ŷ+d2ŷ²+Fehlerterm ŷ = erwartete, geschätzte Werte der abhängigen Variable c = Konstante d = Regressionskoeffizienten • in SPSS: 1. Regression durchführen; dabei unstandardisierte Residuen und unstandardisierte vorhergesagte Werte speichern (im Regressionsfenster unter Speichern/ Residuen (nicht standardisiert) und vorhergesagte Werte (nicht standardisiert) ankreuzen)

  26. Heteroskedastie III 2.Quadrate der vorhergesagten Werte und Residuen bilden (Transformieren/ Berechnen) 3. Regression durchführen, mit AV: quadrierte Residuen; UV: vorhergesagte Werte und quadrierte vorhergesagte Werte => Unterscheiden sich die Regressoren gemeinsam signifikant von 0 = wenn F-Wertes signifikant = Heteroskedastie • verschiedene Möglichkeiten Heteroskedastie zu beheben • meist hilfreich: Transformation der Variablen (insbes. Logarithmierung) • Aufnahme von weiteren exogenen Variablen

More Related