380 likes | 495 Views
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2010. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc. Second Assignment. Please print and bring to class a signed copy of the document appearing at http://www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf.
E N D
EE 5340Semiconductor Device TheoryLecture 6 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc
Second Assignment • Please print and bring to class a signed copy of the document appearing at http://www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf
Net intrinsicmobility • Considering only lattice scattering
Lattice mobility • The mlattice is the lattice scattering mobility due to thermal vibrations • Simple theory gives mlattice ~ T-3/2 • Experimentally mn,lattice ~ T-n where n = 2.42 for electrons and 2.2 for holes • Consequently, the model equation is mlattice(T) = mlattice(300)(T/300)-n
Net extrinsicmobility • Considering only lattice and impurity scattering
Net silicon extrresistivity (cont.) • Since r = (nqmn + pqmp)-1, and mn > mp, (m = qt/m*) we have rp > rn • Note that since 1.6(high conc.) < rp/rn < 3(low conc.), so 1.6(high conc.) < mn/mp < 3(low conc.)
Ionized impuritymobility function • The mimpur is the scattering mobility due to ionized impurities • Simple theory gives mimpur ~ T3/2/Nimpur • Consequently, the model equation is mimpur(T) = mimpur(300)(T/300)3/2
Figure 1.17 (p. 32 in M&K1) Low-field mobility in silicon as a function of temperature for electrons (a), and for holes (b). The solid lines represent the theoretical predictions for pure lattice scattering [5].
Figure 1.16 (p. 31 M&K) Electron and hole mobilities in silicon at 300 K as functions of the total dopant concentration. The values plotted are the results of curve fitting measurements from several sources. The mobility curves can be generated using Equation 1.2.10 with the following values of the parameters [3] (see table on next slide).
Exp. mobility modelfunction for Si1 Parameter As P B mmin 52.2 68.5 44.9 mmax 1417 1414 470.5 Nref 9.68e16 9.20e16 2.23e17 a 0.680 0.711 0.719
Carrier mobilityfunctions (cont.) • The parameter mmax models 1/tlattice the thermal collision rate • The parameters mmin, Nref and a model 1/timpur the impurity collision rate • The function is approximately of the ideal theoretical form: 1/mtotal = 1/mthermal + 1/mimpurity
Carrier mobilityfunctions (ex.) • Let Nd= 1.78E17/cm3 of phosphorous, so mmin = 68.5, mmax = 1414, Nref = 9.20e16 and a = 0.711. • Thus mn = 586 cm2/V-s • Let Na= 5.62E17/cm3 of boron, so mmin = 44.9, mmax = 470.5, Nref = 9.68e16 and a = 0.680. • Thus mp = 189 cm2/V-s
Drift Current • The drift current density (amp/cm2) is given by the point form of Ohm Law J = (nqmn+pqmp)(Exi+ Eyj+ Ezk), so J = (sn + sp)E =sE, where s = nqmn+pqmp defines the conductivity • The net current is
Drift currentresistance • Given: a semiconductor resistor with length, l, and cross-section, A. What is the resistance? • As stated previously, the conductivity, s = nqmn + pqmp • So the resistivity, r = 1/s = 1/(nqmn + pqmp)
Drift currentresistance (cont.) • Consequently, since R = rl/A R = (nqmn + pqmp)-1(l/A) • For n >> p, (an n-type extrinsic s/c) R = l/(nqmnA) • For p >> n, (a p-type extrinsic s/c) R = l/(pqmpA)
Drift currentresistance (cont.) • Note: for an extrinsic semiconductor and multiple scattering mechanisms, since R = l/(nqmnA) or l/(pqmpA), and (mn or p total)-1 = Smi-1, then Rtotal = S Ri (series Rs) • The individual scattering mechanisms are: Lattice, ionized impurity, etc.
Net silicon (ex-trinsic) resistivity • Since r = s-1 = (nqmn + pqmp)-1 • The net conductivity can be obtained by using the model equation for the mobilities as functions of doping concentrations. • The model function gives agreement with the measured s(Nimpur)
Net silicon extrresistivity (cont.) • Since r = (nqmn + pqmp)-1, and mn > mp, (m = qt/m*) we have rp > rn, for the same NI • Note that since 1.6(high conc.) < rp/rn < 3(low conc.), so 1.6(high conc.) < mn/mp < 3(low conc.)
Figure 1.15 (p. 29) M&K Dopant density versus resistivity at 23°C (296 K) for silicon doped with phosphorus and with boron. The curves can be used with little error to represent conditions at 300 K. [W. R. Thurber, R. L. Mattis, and Y. M. Liu, National Bureau of Standards Special Publication 400–64, 42 (May 1981).]
Net silicon (com-pensated) res. • For an n-type (n >> p) compensated semiconductor, r = (nqmn)-1 • But now n = N Nd - Na, and the mobility must be considered to be determined by the total ionized impurity scattering Nd + Na NI • Consequently, a good estimate is r = (nqmn)-1 = [Nqmn(NI)]-1
Figure 1.16 (p. 31 M&K) Electron and hole mobilities in silicon at 300 K as functions of the total dopant concentration. The values plotted are the results of curve fitting measurements from several sources. The mobility curves can be generated using Equation 1.2.10 with the following values of the parameters [3] (see table on next slide).
Param. As P mmin 52.2 68.5 mmax 1417 1414 Nref 9.68e16 9.20e16 a 0.680 0.711 Nd > Na n-type no = Nd - Na = N s = no q mn NI =Nd + Na NAs > NPAs param NP > NAs P param po = ni2/no Approximate m func- tion for extrinsic, compensated n-Si1
Parameter B mmin 44.9 mmax 470.5 Nref 2.23e17 a 0.719 Na > Nd p-type po = Na - Nd= |N| s = po q mp NI =Nd + Na Na = NB B par no = ni2/po Approximate m func-tion for extrinsic, compensated p-Si1
Summary • The concept of mobility introduced as a response function to the electric field in establishing a drift current • Resistivity and conductivity defined • m(Nd,Na,T) model equation developed • Resistivity models developed for extrinsic and compensated materials
Equipartitiontheorem • The thermodynamic energy per degree of freedom is kT/2 Consequently,
Carrier velocitysaturation1 • The mobility relationship v = mE is limited to “low” fields • v < vth = (3kT/m*)1/2 defines “low” • v = moE[1+(E/Ec)b]-1/b, mo = v1/Ec for Si parameter electrons holes v1 (cm/s) 1.53E9 T-0.87 1.62E8 T-0.52 Ec (V/cm) 1.01 T1.55 1.24 T1.68 b 2.57E-2 T0.66 0.46 T0.17
Carrier velocity2 carrier velocity vs E for Si, Ge, and GaAs (after Sze2)
Carrier velocitysaturation (cont.) • At 300K, for electrons, mo = v1/Ec = 1.53E9(300)-0.87/1.01(300)1.55 = 1504 cm2/V-s, the low-field mobility • The maximum velocity (300K) is vsat = moEc = v1 =1.53E9 (300)-0.87 = 1.07E7 cm/s
Diffusion ofcarriers • In a gradient of electrons or holes, p and n are not zero • Diffusion current,`J =`Jp +`Jn (note Dp and Dn are diffusion coefficients)
Diffusion ofcarriers (cont.) • Note (p)x has the magnitude of dp/dx and points in the direction of increasing p (uphill) • The diffusion current points in the direction of decreasing p or n (downhill) and hence the - sign in the definition of`Jp and the + sign in the definition of`Jn
Doping gradient induced E-field • If N = Nd-Na = N(x), then so is Ef-Efi • Define f = (Ef-Efi)/q = (kT/q)ln(no/ni) • For equilibrium, Efi = constant, but • for dN/dx not equal to zero, • Ex = -df/dx =- [d(Ef-Efi)/dx](kT/q) = -(kT/q) d[ln(no/ni)]/dx = -(kT/q) (1/no)[dno/dx] = -(kT/q) (1/N)[dN/dx], N > 0
Induced E-field(continued) • Let Vt = kT/q, then since • nopo = ni2 gives no/ni = ni/po • Ex = - Vt d[ln(no/ni)]/dx = - Vt d[ln(ni/po)]/dx = - Vt d[ln(ni/|N|)]/dx, N = -Na < 0 • Ex = - Vt (-1/po)dpo/dx = Vt(1/po)dpo/dx = Vt(1/Na)dNa/dx
The Einsteinrelationship • For Ex = - Vt (1/no)dno/dx, and • Jn,x = nqmnEx + qDn(dn/dx)= 0 • This requires that nqmn[Vt (1/n)dn/dx] = qDn(dn/dx) • Which is satisfied if
References • *Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989. • ** and 3Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago. • M&K = Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003.
References M&K and 1Device Electronics for Integrated Circuits, 2 ed., by Muller and Kamins, Wiley, New York, 1986. • See Semiconductor Device Fundamen-tals, by Pierret, Addison-Wesley, 1996, for another treatment of the m model. 2Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981.