1 / 26

EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2009

EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2009. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc. Second Assignment. Please print and bring to class a signed copy of the document appearing at http://www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf.

phil
Download Presentation

EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2009

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EE 5340Semiconductor Device TheoryLecture 5 - Fall 2009 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc

  2. Second Assignment • Please print and bring to class a signed copy of the document appearing at http://www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf

  3. Classes ofsemiconductors • Intrinsic: no = po = ni, since Na&Nd << ni, ni2 = NcNve-Eg/kT, ~1E-13 dopant level ! • n-type: no > po, since Nd > Na • p-type: no < po, since Nd < Na • Compensated: no=po=ni, w/ Na- = Nd+ > 0 • Note: n-type and p-type are usually partially compensated since there are usually some opposite- type dopants

  4. n-type equilibriumconcentrations • N ≡Nd- Na , n type N > 0 • For all N, no = N/2 + {[N/2]2+ni2}1/2 • In most cases, N >> ni, so no = N, and po= ni2/no = ni2/N, (Law of Mass Action is al- ways true in equilibrium)

  5. p-type equilibriumconcentrations • N ≡Nd - Na , p type  N < 0 • For all N, po = |N|/2 + {[|N|/2]2+ni2}1/2 • In most cases, |N| >> ni, so po = |N|, and no = ni2/po = ni2/|N|, (Law of Mass Action is al- ways true in equilibrium)

  6. Intrinsic carrierconc. (MB limit) • ni2 = no po = Nc Nv e-Eg/kT • Nc = 2{2pm*nkT/h2}3/2 • Nv = 2{2pm*pkT/h2}3/2 • Eg = 1.17 eV - aT2/(T+b) a = 4.73E-4 eV/K b = 636K

  7. Drift Current • The drift current density (amp/cm2) is given by the point form of Ohm Law J = (nqmn+pqmp)(Exi+ Eyj+ Ezk), so J = (sn + sp)E =sE, where s = nqmn+pqmp defines the conductivity • The net current is

  8. Drift currentresistance • Given: a semiconductor resistor with length, l, and cross-section, A. What is the resistance? • As stated previously, the conductivity, s = nqmn + pqmp • So the resistivity, r = 1/s = 1/(nqmn + pqmp)

  9. Drift currentresistance (cont.) • Consequently, since R = rl/A R = (nqmn + pqmp)-1(l/A) • For n >> p, (an n-type extrinsic s/c) R = l/(nqmnA) • For p >> n, (a p-type extrinsic s/c) R = l/(pqmpA)

  10. Drift currentresistance (cont.) • Note: for an extrinsic semiconductor and multiple scattering mechanisms, since R = l/(nqmnA) or l/(pqmpA), and (mn or p total)-1 = Smi-1, then Rtotal = S Ri (series Rs) • The individual scattering mechanisms are: Lattice, ionized impurity, etc.

  11. Net intrinsicmobility • Considering only lattice scattering

  12. Lattice mobility • The mlattice is the lattice scattering mobility due to thermal vibrations • Simple theory gives mlattice ~ T-3/2 • Experimentally mn,lattice ~ T-n where n = 2.42 for electrons and 2.2 for holes • Consequently, the model equation is mlattice(T) = mlattice(300)(T/300)-n

  13. Net extrinsicmobility • Considering only lattice and impurity scattering

  14. Net silicon extrresistivity (cont.) • Since r = (nqmn + pqmp)-1, and mn > mp, (m = qt/m*) we have rp > rn • Note that since 1.6(high conc.) < rp/rn < 3(low conc.), so 1.6(high conc.) < mn/mp < 3(low conc.)

  15. Ionized impuritymobility function • The mimpur is the scattering mobility due to ionized impurities • Simple theory gives mimpur ~ T3/2/Nimpur • Consequently, the model equation is mimpur(T) = mimpur(300)(T/300)3/2

  16. Figure 1.17 (p. 32 in M&K1) Low-field mobility in silicon as a function of temperature for electrons (a), and for holes (b). The solid lines represent the theoretical predictions for pure lattice scattering [5].

  17. Exp. m(T=300K) modelfor P, As and B in Si1

  18. Exp. mobility modelfunction for Si1 Parameter As P B mmin 52.2 68.5 44.9 mmax 1417 1414 470.5 Nref 9.68e16 9.20e16 2.23e17 a 0.680 0.711 0.719

  19. Carrier mobilityfunctions (cont.) • The parameter mmax models 1/tlattice the thermal collision rate • The parameters mmin, Nref and a model 1/timpur the impurity collision rate • The function is approximately of the ideal theoretical form: 1/mtotal = 1/mthermal + 1/mimpurity

  20. Carrier mobilityfunctions (ex.) • Let Nd= 1.78E17/cm3 of phosphorous, so mmin = 68.5, mmax = 1414, Nref = 9.20e16 and a = 0.711. • Thus mn = 586 cm2/V-s • Let Na= 5.62E17/cm3 of boron, so mmin = 44.9, mmax = 470.5, Nref = 9.68e16 and a = 0.680. • Thus mp = 189 cm2/V-s

  21. Net silicon (ex-trinsic) resistivity • Since r = s-1 = (nqmn + pqmp)-1 • The net conductivity can be obtained by using the model equation for the mobilities as functions of doping concentrations. • The model function gives agreement with the measured s(Nimpur)

  22. Figure 1.15 (p. 29) M&K Dopant density versus resistivity at 23°C (296 K) for silicon doped with phosphorus and with boron. The curves can be used with little error to represent conditions at 300 K. [W. R. Thurber, R. L. Mattis, and Y. M. Liu, National Bureau of Standards Special Publication 400–64, 42 (May 1981).]

  23. Net silicon extrresistivity (cont.) • Since r = (nqmn + pqmp)-1, and mn > mp, (m = qt/m*) we have rp > rn, for the same NI • Note that since 1.6(high conc.) < rp/rn < 3(low conc.), so 1.6(high conc.) < mn/mp < 3(low conc.)

  24. Net silicon (com-pensated) res. • For an n-type (n >> p) compensated semiconductor, r = (nqmn)-1 • But now n = N  Nd - Na, and the mobility must be considered to be determined by the total ionized impurity scattering Nd + Na NI • Consequently, a good estimate is r = (nqmn)-1 = [Nqmn(NI)]-1

  25. Figure 1.16 (p. 31 M&K) Electron and hole mobilities in silicon at 300 K as functions of the total dopant concentration. The values plotted are the results of curve fitting measurements from several sources. The mobility curves can be generated using Equation 1.2.10 with the following values of the parameters [3] (see table on next slide).

  26. References 1Device Electronics for Integrated Circuits, 2 ed., by Muller and Kamins, Wiley, New York, 1986. • See Semiconductor Device Fundamen-tals, by Pierret, Addison-Wesley, 1996, for another treatment of the m model. 2Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981.

More Related