1 / 8

MODUL-3 VEKTOR dan SKALAR

MODUL-3 VEKTOR dan SKALAR. Science Center Universitas Brawijaya. Vektor dan Skalar. Besaran Skalar : besran yang hanya mempunyai nilai saja. Besaran Vektor : adalah besaran yang mempunyai nlai dan arah, serta tidak tunduk pada hukum-hukum aljabar. A. A. Menyatakan besar dari vektor A.

elaine
Download Presentation

MODUL-3 VEKTOR dan SKALAR

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MODUL-3VEKTOR dan SKALAR Science Center Universitas Brawijaya

  2. Vektor dan Skalar • Besaran Skalar : besran yang hanya mempunyai nilai saja. • Besaran Vektor : adalah besaran yang mempunyai nlai dan arah, serta tidak tunduk pada hukum-hukum aljabar. A A Menyatakan besar dari vektor A.

  3. Penjumlahan Vektor C = A + B B C B  A A

  4. Pengurangan Vektor D = A – B atau D = A + (- B) B  A -B D

  5. Perkalian Vektor Perkalian vektor ada dua macam , yaitu : • Perkalian Titik (dot product)  skalar ; A B cos  • Perkalian Silang ( cross product)  vektor : A B Sin 

  6. Perkalian Vektor Perkalian vektor ada dua macam , yaitu : • Perkalian Titik (dot product)  skalar ; A B cos  • Perkalian Silang ( cross product)  vektor : A B Sin 

  7. Vektor dalam 2 Dimensi Y A = Ax + Ay Ay A Ax = A Cos  Ay = A Sin   X Ax

  8. Vektor dalam 2 Dimensi C = A + B = (Ax + Ay) + (Bx + By) = (Ax + Bx) + (Ay + By) = Cx + Cy D = A – B = (Ax + Ay) - (Bx + By) = (Ax - Bx) + (Ay - By) = Dx + Dy

More Related