1 / 20

Ring Kuosen dari Ring Polinomial

Ring Kuosen dari Ring Polinomial. Polinomial irredusibel dalam suatu ring polinomial dapat dianalogikan dengan bilangan prima. Di samping itu dalam himpunan bilangan Z setiap ideal merupakan ideal utama ( m ).

elmo-barr
Download Presentation

Ring Kuosen dari Ring Polinomial

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ring Kuosendari Ring Polinomial

  2. Polinomialirredusibeldalamsuatu ring polinomialdapatdianalogikandenganbilangan prima. • Di sampingitudalamhimpunanbilanganZsetiap ideal merupakan ideal utama (m). • Dalambabiniakandibahasuntukkelas ring manakahdarikoefisien-koefisiendaripolinomial yang beradadalamAsehinggasetiap ideal dalamA[x] merupakan ideal utama? • Sifat yang tertulisdalamteoremainisangatpentingdalampembahasanselanjutnya.

  3. Teorema XVI.1 • JikadiketahuiF field makasetiap ideal dalamF[x] merupakan ideal utama. Contoh XVI.1 • Diketahui ring R[x] dan ideal • (x2 + 1) = { f(x) (x2 + 1)│f(x) dalamR[x] } • Akanditentukansifat-sifatdariR[x] / (x2 + 1).

  4. Teorema XVI.2 • JikaF field danpolinomialp(x) irredusibeldalamF[x] maka ring kuosenF[x] / ( p(x) ) merupakan field. Teorema XVI.3 (Teorema fundamental darihomomorfisma ring) • Jikadiketahuif : A → Bhomomorfisma ring denganpetaf(A) danintiKmaka ring kuosenA/Kisomorfismadenganf(A).

  5. Latihan

  6. TERIMA KASIH

More Related