300 likes | 503 Views
V O D A (teze přednášky). Biofyzikální vlastnosti znamenají možnost života na Zemi. Ztráta 10 % vody u savců představuje vážné poruchy, ztráta 25 % smrt. Krev 93 % Ledviny 83 % Srdce, plíce 79 % Svalovina 76 % Mozek 70 % Skelet 22 % Zubní sklovina 0,2 %.
E N D
V O D A(teze přednášky) Biofyzikální vlastnosti znamenají možnost života na Zemi. Ztráta 10 % vody u savců představuje vážné poruchy, ztráta 25 % smrt.
Krev 93 % Ledviny 83 % Srdce, plíce 79 % Svalovina 76 % Mozek 70 % Skelet 22 % Zubní sklovina 0,2 % S věkem obsah vody klesá z 80 % při narození na 50 % ve stáří Voda je nejvíce zastoupenou sloučeninou v organizmu
Parciální náboje Vodíkové vazby (můstky) E ~ 8 – 40 kJ mol-1 asociace (shlukování) molekul Polární rozpouštědlo Silně polární struktura σ + H H 104,5o O - σ
KAPALNÁ VODA • USPOŘÁDÁNÍ DO „CLUSTERS“ • Molekuly vzájemně asociují, střídají se oblasti organizované s neorganizovanými a se samostatnými molekulami • Molekuly se mohou zasouvat do sebe • Různé energie H můstků v závislosti na prostorovém uspořádání jednotlivých clusters • Paměť molekul (transport informace, homeopatika)
L E D „VURTZITOVÁ“ struktura Každá molekula vody přitahuje 4 další molekuly. Molekuly vytvářejí pravidelný tetraedr krystalů ledu. Vodíkové můstky mají stejnou energii v závislosti na teplotě. Pravidelné vzdálenosti vedou k zvětšení objemu Vmax 4 oC - anomálie vody.
Univerzální rozpouštědlo Prostředí pro fyzikální (osmóza) a chemické (hydrolýza) procesy Strukturální (uspořádání membrán) Transportní (plynů, živin, tepla) Termoregulační Velké specifické teplo 4,2 kJ mol-1 → akumulace tepla Výborná tepelná vodivost Vysoké skupenské teplo výparné 2,4 kJ mol-1 (37oC) Evaporace Anomálie vody FUNKCE VODY
ROZPOUŠTĚNÍ • Kapaliny mají schopnost rozrušovat vzájemné interakce částic pevných látek nebo jiných kapalin a uvolněné částice rovnoměrně rozptylovat (snaha o dosažení rovnovážného stavu). • ROZPUSTNOST je stavová veličina představující kvantitativní míru rozpouštění • NASYCENÝ ROZTOK je rovnovážná soustava, kdy za dané teploty se přidávaná látka přestává rozpouštět a vytváří samostatnou fázi.
DISOCIACE – rozpad na menší části – ionty (disociační konstanta) • ASOCIACE – spojování částic (H můstky) • SOLVATACE (HYDRATACE) obalování částic molekulami rozpouštědla (vody)
ROZDĚLENÍ VODY • Dříve volná x vázaná • Nyní dle aktivity vody aw piw aw = ------------ piwo piw parciálnítenze vodních par nad potravinou piwo parciálnítenze vodních par nad čistou vodou
Aktivita vody • Protože tenze par odpovídá vzdušné relativní vlhkosti RV udávané v % přibližně platí: RV aw = ----------- 100
ROZDĚLENÍ VODY • aw 0,0 - 0,2voda vicinální monomolekulární vrstva, nemá schopnost rozpouštědla, bez možnosti chemických reakcí 2. aw 0,2 - 0,7 voda vícevrstvá fyzikální sorpce na potravinu, převládají vodíkové vazby mezi vrstvami vody 3.aw 0,7 - 1,0 voda kondenzovaná voda volná získá se odpařením voda zachycená získá se lisováním
Všechny interakce vody v potravinách vedou k poklesu entropie, tedy k nárustu organizovanosti představované terciární a kvartérní strukturou koloidů. • aw roste s teplotou 10 oC o 0,03-0,2 • 1,0-0,9 potraviny velmi vlhké • 0,9-0,6 potraviny středně vlhké • 0,2 – 0,6 potraviny suché • Čerstvé maso 0,97 uzenina 0,82 – 0,85
Aktivita vody • Představuje dostupnost mikroorganismů k vodě z potraviny, tedy vztah ke údržnosti • 0,95 Salmonella • 0,90 Listeria monocytogenes • 0,86 Staphylococcus aureus • 0,78 Aspergillus flavus
KOLIGATIVNÍ VLASTNOSTI SOUVISÍ S POČTEM ČÁSTIC V ROZTOKU, JEJICHŽ VLASTNOSTI SE LIŠÍ OD VLASTNOSTÍ ČISTÝCH SLOŽEK • Raultův zákon: Tenze par rozpouštědla nad roztokem je za stejných podmínek vždy nižší než nad čistým rozpoštědlem (po). Δ p = po . X2 X2 molární zlomek rozpuštěné látky podíl počtu částic rozpuštěné látky vůči součtu počtu částic rozpuštěné látky a počtu částic rozpouštědla
EBULIOSKOPIE • Bod varu roztoku je vždy vyšší než bod varu čistého rozpouštědla ΔTe = Ee . m Ee ebulioskopická konstanta m molární koncentrace [mol . m-3]
KRYOSKOPIE • Bod tuhnutí roztoku je vždy nižší než čistého rozpouštědla ΔTk = Ek . m Ek kryoskopická konstanta m molární koncentrace [mol . m-3]
OSMOTICKÝ TLAK π • Je výsledkem snahy koncentrovaného roztoku po zředění (vyrovnání koncentračního gradientu) • Hydrostatický tlak: p = h . ρ . g [Pa] Vańt Hoffův vztah: π = R . T . c . i[Pa] c molární koncentrace[mol . m-3] iVańt Hoffův opravný koeficient Pro neelektrolyty = 1 Pro elektrolyty počtu vzniklých iontů • Osmolarita [mosmol . l-1] • Osmolalita [mosmol . kg-1 rozpouštědla]
OSMÓZA – TOK ROZPOUŠTĚDLA • Představuje transport hmoty látkový tok J = k . S (π1 – π2) k– koeficient propustnosti S– celková plocha rozhraní π1 , π2– osmotické tlaky roztoků oddělených membránou
TYPY ROZTOKŮ izotonický – stejný osmotický tlak hypotonický x hypertonický nižší osmotický tlak vyšší osmotický tlak směr pohybu molekul rozpouštědla
OSMOTICKÝ TLAK • Roztoky hepertonické voda ven z buňky → svrašťování plazmorhyza (u rostlin plazmolýza) • Roztoky hypotonické voda do buňky, zvětšení objemu plazmoptýza, haemolýza • Roztoky isotonické pro krev π = 0,74 MPa 0,9 % NaCl (0,155 mol.l-1) nebo 5 % glukóza (0,31 mol.l-1)
ONKOTICKÝ TLAK • Týká se koloidů má v plazmě menší význam než osmotický tlak solí, působí proti hydrostatickému tlaku krve v končetinách, a proto má význam v tkáňové cirkulaci – zamezuje hromadění vody ve tkáních • Hypoproteinemie plazmy vede k otokům
ONKOTICKÝ TLAK • Schopnost potravin vázat přidanou vodu • 1 g albuminu či globulinu váže 1,3 g vody • 1 g škrobu váže 0,8 g vody (solení, prátování atd.)
TERMIKA • Teplo je nejméně uspořádaná forma energie • Teplo je suma všech forem kinetických energií 1 J = 0,2388 cal 1 cal = 4,1868 J • Teplota – míra střední kinetické energie všech částic • Teplota – stavová veličina, kterou vnímáme
MĚŘENÍ TEPLOTY • objemová roztažnost tekutin vodíkový teploměr kapalinové teploměry • délková roztažnost pevných látek l = lo . (1 + α t) bimetalové teploměry keramické teploměry • závislost elektrického odporu na teplotě vodičů R = Ro . (1 + α t ..ß t2 + …) platinové teploměry polovodičů termistory R = A . eB/T • optické metody dotykové – kapalné krystaly bezdotykové – IF záření
TERMOREGULACE ORGANIZMU • z hlediska výměny tepla s okolím je rozhodující velikost povrchu, nikoliv objemu nebo hmotnosti • teplota má hlavní význam pro udržení činnosti enzymů • zrcadlový efekt jater (při syntéze je minimální degradace a naopak)
Transport tepla v organizmu • kondukcí (vedením) mezi orgány dt Q = λ . S . --------- . τ dx λ koeficient přestupu tepla τ (tau) čas dt/dx gradient teploty podle vzdálenosti S plocha
Transport tepla v organizmu • konvekcí (prouděním) krev – transport energie i hmoty Q = α . S . Δt . τ α koef. přestupu tepla přes rozhraní τ čas Δt gradient teploty S plocha
Produkce tepla, energie • stanovení přímé – kalorimetricky • stanovení nepřímé – ze spotřeby O2 • spalná tepla fyzikální x fyziologická • sacharidy a bílkoviny 17 MJ.kg-1 tuky 38 MJ.kg-1 • fyziologická využitelnost energie bílkovin je snížena o energii nutnou k detoxikaci dusíkatých látek (močovina, kyselina močová, aminy atd.)
Produkce tepla a omezení transportu tepla do okolí • zvýšení bazálního metabolizmu • svalový třes • izolační vlastnosti pokryvu těla • zmenšení povrchu • vazokonstrikce
Výdej tepla • radiací (u člověka až 60 %) závislá na teplotě okolí a pokryvu těla Q ~ T4 • vedením - nejteplejší jsou játra • vazodilatací • prouděním • evaporace závislá na vlhkosti vzduchu