1 / 31

Bringing Experimenters to GENI with the Transit Portal

Bringing Experimenters to GENI with the Transit Portal. Vytautas Valancius, Hyojoon Kim, Nick Feamster Georgia Tech (with Jennifer Rexford and Aki Nakao). Talk Agenda. Motivation: Custom routing for each experiment Demonstration How you can connect to Transit Portal Experiment Ideas

fallon
Download Presentation

Bringing Experimenters to GENI with the Transit Portal

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bringing Experimenters to GENI with the Transit Portal Vytautas Valancius, Hyojoon Kim, Nick FeamsterGeorgia Tech(with Jennifer Rexford and Aki Nakao)

  2. Talk Agenda • Motivation: Custom routing for each experiment • Demonstration • How you can connect to Transit Portal • Experiment Ideas • Anycast • Service Migration • Flexible Peering • Using Transit Portal in Education • Example problem set • Summary and Breakout Ideas

  3. Session Networks Use BGP to Interconnect Autonomous Systems Route Advertisement Traffic

  4. Virtual Networks Need BGP Too • Strawman • Default routes • Public IP address • Problems • Experiments may needto see all upstream routes • Experiments may needmore control overtraffic • Need “BGP” • Setting up individualsessions is cumbersome • …particularly for transient experiments ISP 2 ISP 1 BGP Sessions GENI

  5. Route Control Without Transit Portal • Obtain connectivity to upstream ISPs • Physical connectivity • Contracts and routing sessions • Obtain the Internet numbered resources from authorities • Expensive and time-consuming!

  6. Route Control with Transit Portal Experiment Facility Internet ISP1 Virtual Router A Transit Portal Virtual Router B Experiment 1 ISP2 Full Internet route control to hosted cloud services! Routes Experiment 2 Packets

  7. Connecting to the Transit Portal • Separate Internet router for each service • Virtual or physical routers • Links between service router and TP • Each link emulates connection to upstream ISP • Routing sessions to upstream ISPs • TP exposes standard BGP route control interface

  8. Basic Internet Routing with TP • Experiment with two upstream ISPs • Experiment can re-route traffic over one ISP or the other, independently of other experiments ISP 2 ISP 1 BGP Sessions Traffic Transit Portal Virtual BGP Router Interactive Cloud Service

  9. Current TP Deployment • Server with custom routing software • 4GB RAM, 2x2.66GHz Xeon cores • Three active sites with upstream ISPs • Atlanta, Madison, and Princeton • A number of active experiments • BGP poisoning (University of Washington) • IP Anycast (Princeton University) • Advanced Networking class (Georgia Tech)

  10. Demonstration of Transit Portal

  11. Demonstration Setup Looking-glass Server Client network: 168.62.21.0/24 route-server.ip.att.net Transit Portal Virtual Router Traceroute VPN Tunneling GT (AS 2637) Public AS 47065 Private AS 65002 : BGP connectivity

  12. Setting Up Peering with TP • Pick a device which will be the virtual router (Linux) • Request for needed resources & provide information • For tunneling: CA certificate, client certificate & key • Get prefixes that the client will announce • Make tunneling connection with Transit Portal • Set up BGP daemon in virtual router (e.g. Quagga) • Make proper changes to routing table if necessary • Check BGP announcements & connectivity (BGP table)... and you are good to go!

  13. Experiments Using Transit Portal

  14. Experiment 1: IP Anycast • Internet services require fast name resolution • IP anycast for name resolution • DNS servers with the same IP address • IP address announced to ISPs in multiple locations • Internet routing converges to the closest server • Available only to large organizations

  15. IP Anycast • Host service at multiple locations (e.g., on ProtoGENI) • Direct traffic to one instance of the service or another using anycast Asia North America ISP1 ISP2 ISP3 ISP4 Transit Portal Transit Portal Anycast Routes Name Service Name Service

  16. Experiment 2: Service Migration • Internet services in geographically diverse data centers • Operators migrate Internet user’s connections • Two conventional methods: • DNS name re-mapping • Slow • Virtual machine migration with local re-routing • Requires globally routed network

  17. Service Migration Asia Internet North America ISP1 ISP2 ISP3 ISP4 Transit Portal Transit Portal Tunneled Sessions Active Game Service

  18. Experiment 3: Flexible Peering Hosted service can quickly provision services in the cloud when demand fluctuates.

  19. Using TP in Courses

  20. Using TP in Your Courses • Used in “Next-Generation Internet” Course at Georgia Tech in Spring 2010 • Students set up virtual networks and connect directly to TP via OpenVPN (similar to demonstration) • Live feed of BGP routes • Routable IP addresses for in class topology inference and performance measurements

  21. Example Problem Set • Set up virtual network with • Intradomain routing • Hosted services • Rate limiting • Connect to Internet with Transit Portal

  22. Ongoing Developments • More deployment sites • Your help is desperately needed • Integrating TP with network research testbeds (e.g., GENI, CoreLab) • Faster forwarding (NetFPGA, OpenFlow) • Lightweight interface to route control

  23. Conclusion • Limited routing control for hosted services • Transit Portal gives wide-area route control • Advanced applications with many TPs • Open-source implementation • Scales to hundreds of client sessions • The deployment is real • Can be used today for research and education • More information http://valas.gtnoise.net/tp

  24. Transit Portal in the News

  25. Breakout Session Agenda • Q & A • Demonstration Redux • Brainstorming Experiments • MeasuRouting: Routing-Assisted Traffic Monitoring • Pathlet Routing and Adaptive Multipath Algorithms • Aster*x: Load-Balancing Web Traffic over Wide-Area Networks • Migrating Enterprises to Cloud-based Architectures

  26. Extra Slides

  27. Scaling the Transit Portal • Scale to dozens of sessions to ISPs and hundreds of sessions to hosted services • At the same time: • Present each client with sessions that have an appearance of direct connectivity to an ISP • Prevented clients from abusing Internet routing protocols

  28. Conventional BGP Routing • Conventional BGP router: • Receives routing updates from peers • Propagates routing update about one path only • Selects one path to forward packets • Scalable but not transparent or flexible ISP2 ISP1 BGP Router Client BGP Router Client BGP Router Updates Packets

  29. Scaling TP Memory Use • Store and propagate all BGP routes from ISPs • Separate routing tables • Reduce memory consumption • Single routing process - shared data structures • Reduce memory use from 90MB/ISP to 60MB/ISP ISP1 ISP2 Routing Process Routing Table 1 Routing Table 2 Virtual Router Virtual Router Bulk Transfer Interactive Service

  30. Scaling TP CPU Use • Hundreds of routing sessions to clients • High CPU load • Schedule and send routing updates in bundles • Reduces CPU from 18% to 6% for 500 client sessions ISP1 ISP2 Routing Process Routing Table 1 Routing Table 2 Virtual Router Virtual Router Bulk Transfer Interactive Service

  31. Scaling Forwarding Memory • Connecting clients • Tunneling and VLANs • Curbing memory usage • Separate virtual routing tables with default to upstream • 50MB/ISP -> ~0.1MB/ISP memory use in forwarding table ISP1 ISP2 Forwarding Table Forwarding Table 1 Forwardng Table 2 Virtual BGP Router Virtual BGP Router Bulk Transfer Interactive Service

More Related