1 / 32

NARZĘDZIA EKONOMISTY 2

NARZĘDZIA EKONOMISTY 2. WARTOŚĆ NOMINALNA A WARTOŚĆ REALNA. ZAPAMIĘTAJMY!. SIŁA NABYWCZA (wartość) jednostki pieniądza oznacza ilość dóbr konsumpcyjnych, którą – przeciętnie rzecz biorąc - można za nią nabyć. ZAPAMIĘTAJMY!.

Download Presentation

NARZĘDZIA EKONOMISTY 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NARZĘDZIA EKONOMISTY 2

  2. WARTOŚĆ NOMINALNA A WARTOŚĆ REALNA

  3. ZAPAMIĘTAJMY! SIŁA NABYWCZA (wartość) jednostki pieniądza oznacza ilość dóbr konsumpcyjnych, którą – przeciętnie rzecz biorąc - można za nią nabyć.

  4. ZAPAMIĘTAJMY! ZMIENNA EKONOMICZNA JEST NOMINALNA, jeśli jej war-tość zmierzono jednostkami pieniądza o sile nabywczej (wartości) z okresu, do którego zmienna ta się odnosi. ZMIENNA EKONOMICZNA JEST REALNA, jeśli jej wartość zmierzono jednostkami pieniądza o sile nabywczej (wartości) z inne-go okresu niż ten, do którego ta zmienna się odnosi.

  5. ZADANIE W styczniu inflacja wyniosła 20%, a w lutym 25% (względem końca stycznia). a) Ile musisz – przeciętnie – zapłacić, aby 1 marca kupić to, co 1 stycznia mogłeś kupić za złotówkę? b) Na jaką część tego, co wtedy mogłeś sobie kupić za złotów-kę, mając nadal złotówkę możesz sobie pozwolić 1 marca? c) Co powiesz o: (i) „sile nabywczej” Twojego dochodu z 1 mar-ca, który nie zmienił się od 1 stycznia? Użyj także nazw: (ii) „wartość realna”, (iii) „w cenach stałych z ...” i „w cenach bieżących z ...”. c ) (i)

  6. ZADANIE • Od dwóch lat sprzedajesz mieszkanie, oglądających jest wielu, ale jakoś nic z tego nie wynika. Jedno jest jasne – nie obniżysz ce-ny. 500 000 zł to nie jest za dużo za 46 m2 w cegle i z widną kuch-nią na Górnym Mokotowie! W końcu nic nie tracisz, czekając, a im kiedyś puszczą nerwy. Wszystko drożeje! W radiu mówili, ze inflacja w ubiegłym i w tym roku wynosiła po 10%. • Ile wynosi cena Twojego mieszkania wyrażona w złotych sprzed dwóch lat? • b) Czy zatem rzeczywiście „nic nie tracisz, czekając”? • c) O ile procent musiałbyś podnieść cenę swojego M4, aby unik-nąć TYCH strat?

  7. ZADANIE Ceny spadły przeciętnie o ⅓ . Jak i o ile zmieniła się war-tość realna stałego dochodu Hipotecjusza, który jest prze-ciętnymkonsumentem?

  8. WARTOŚĆ A CZAS

  9. Kiedy ten, kto pożycza innym, dostaje za to wynagrodzenie, siła nabywcza (wartość) pożyczonej komuś sumy zmienia się w miarę upływu czasu, niczym pod wpływem inflacji.

  10. Stosowane w takiej sytuacji metody znajdowania PRZYSZŁEJ WARTOŚCI KWOT PIENIĄDZA, KTÓRE MAMY DZIŚ (ang. future value), a także DZISIEJSZEJ WARTOŚCI KWOT PIENIĄ-DZA, KTÓRE BĘDZIEMY MIELI W PRZYSZŁOŚCI (ang. Pre-sent value), są ważnym narzędziem ekonomisty. • Dzięki tym metodom potrafimy np.: • ocenić opłacalność zakupu maszyny lub obligacji; • prywatne firmy stosują je m. in. po to, aby wybrać najlepszy projekt budowy nowej fabryki; • państwo zaś – budowy tamy, mostu lub autostrady. Podobne kumulacyjne procesy rządzą m. in. wzrostem gospodarczym.

  11. Co to jest STOPA PROCENTOWA? Na okres (rok) pożyczasz komuś złotowkę. Po upływie okresu (ro-ku) dostajesz z powrotem 1,1 zł. 1 zł → 1,1 zł Pomyśl o stosunku wynagrodzenia za pożyczenie komuś złotowki do wysokości pożyczonej kwoty. 0,1 zł/1 zł = 0,1 = 10%. STOPA PROCENTOWA JEST TO STOSUNEK WYNA- GRODZENIA ZA UDZIELENIE POŻYCZKI DO WY- SOKOŚCI TEJ POŻYCZKI.

  12. Nie zawsze obliczenie stopy procentowej jest trywialnie łatwe... ZADANIE Pożyczono 5 gb na rok za wynagrodzenie 1 gbwypłacane W MOMENCIE ZWROTU POŻYCZKI. a) Jaką kwotę pożyczkodawca na rok udostępnił pożyczkobiorcy? b) Pomyśl o sumie zwracanej przez pożyczkobiorcę (wraz z ewen-tualnymi odsetkami) po okresie, którego dotyczy pożyczka; o ile ta suma przewyższa kwotę udostępnioną pożyczkobiorcy na rok? c) Oblicz roczną stopę procentową. d) Tym razem wynagrodzenie jest wypłacane W MOMENCIE OTRZYMANIA POŻYCZKI; jaką kwotę pożyczkodawca na rokudostępnia pożyczkobiorcy? e) Znowu pomyśl o sumie zwracanej przez pożyczkobiorcę (wraz z ewentualnymi odsetkami) po okresie, którego dotyczy pożyczka; o ile przewyższa ona kwotę udostępnioną pożyczkobiorcy na rok? f) Opisz pożyczkę, której koszt dla pożyczkobiorcy jest taki sam, jak pożyczki z pytania (d). Od pożyczki z pytania (d) niech różni się ona tym, że wynagrodzenie za jej udzielenie jest wypłacane w momencie zwrotu pożyczki. g) Dla pożyczki z pytania (d) oblicz roczną stopę procentową.

  13. NOMINALNA A REALNA STOPA PROCENTOWA Na okres (np. rok) pożyczasz komuś złotowkę. Po upływie tego okresu (roku) dostajesz z powrotem 1,1 zł. 1 zł → 1,1 zł, więc 0,1 zł/1 zł = 0,1 = 10%. Ta stopa procentowa zasłuje na miano NOMINALNEJ (in), ponie-waż obliczając ją nie uwzględniliśmy zmian wartości pieniądza spowodowanych inflacją.

  14. Na okres (np. rok) pożyczasz komuś złotowkę. Po upływie tego okresu (roku) dostajesz z powrotem 1,1 zł. 1 zł → 1,1 zł, więc 0,1 zł/1 zł = 0,1 = 10%. A teraz obliczymy REALNĄ stopę procentową (ir). Powiedzmy, że w okresie, na który opiewała pożyczka, ceny wzrosły o π=5%... Ile w takiej sytuacji wyniosło wynagrodzenie pożyczkodawcy?

  15. W praktyce i tak najczęściej: ir = in – π.

  16. FUTURE VALUE, CZYLI DO JAKIEJ WARTOŚCI UROŚNIE POŻYCZONA DZIŚ NA PROCENT KWOTA PIENIĄDZA?

  17. 1 zł+1 zł•i = 1 •(1+ i)1 zł Tyle pieniędzy zwróci wierzycielowi dłużnik, który na rok pożyczył 1 zł.

  18. 1 zł+1 zł•i = 1 •(1+ i)1 zł Tyle pieniędzy zwróci wierzycielowi dłużnik, który na rok pożyczył 1 zł. Po drugim roku wierzycielowi należy się tyle, ile należało mu się po 1. roku plus odsetki od tej kwoty za drugi rok: [1•(1+ i) zł+i•1•(1+i)]zł = [1•(1+i)•(1+i)]zł = 1•(1+i)2] zł.

  19. 1 zł+1 zł•i = 1 •(1+ i)1 zł Tyle pieniędzy zwróci wierzycielowi dłużnik, który na rok pożyczył 1 zł. Po drugim roku wierzycielowi należy się tyle, ile należało mu się po 1. roku plus odsetki od tej kwoty za drugi rok: [1•(1+ i) zł+i•1•(1+i)]zł = [1•(1+i)•(1+i)]zł = 1•(1+i)2] zł.

  20. Po trzecim roku wierzycielowi należy się tyle, ile należało mu się po 2. roku plus odsetki od tej kwoty za trzeci rok: [1•(1+ i)2 +i•1•(1+i)2]zł = [1•(1+i)2•(1+i)]zł = 1•(1+i)3] zł.

  21. Po trzecim roku wierzycielowi należy się tyle, ile należało mu się po 2. roku plus odsetki od tej kwoty za trzeci rok: [1•(1+ i)2 +i•1•(1+i)2]zł = [1•(1+i)2•(1+i)]zł = 1•(1+i)3] zł. I tak dalej. Rozumowanie to możemy uogólnić, mówiąc, że po n latach wartość pożyczonego 1 zł zwiększa się do 1•(1+i)n zł. Natomiast wartość A zł rośnie do An = A•(1+i)n zł. Np. jeśli stopa procentowa wynosi 10%, po 3 latach dzisiejsza kwota 1000zł urośnie do 1000•(1+i)3zł = 1000•1,331zł = 1331zł.

  22. Lata Stopa procentowa 4% 7% 10% 1 2 3 4 5 10 20 50 100 1,0 1,1 1,1 1,2 1,2 1,5 2,2 7,1 50,5 1,1 1,2 1,2 1,3 1,4 2,0 3,9 29,5 867,7 1,1 1,2 1,3 1,5 1,6 2,6 6,7 117,4 13 780,6 Popatrzmy, z jak wielką siłą działa procent składany! Lata Nie należy lekceważyć niewielkich różnic poziomu stopy procento-wej. Nawet małe różnice oprocentowania po wielu okresach kapita-lizacyjnych skutkują ogromnymi różnicami przyszłych wartości dzi-siejszej kwoty pieniądza.

  23. A zatem w gospodarce, w której cena pożyczek, czyli stopa pro-centowa wynosi i, mając dziś kwotę A, za n lat możemy się stać właścicielami kwoty An=A•(1+i)n (An to po angielsku future va-lue).Wystarczy ulokować pieniądze w banku lub kupić pa-piery wartościowe. Czy jest możliwa operacja odwrotna? Nic prost-szego!

  24. Jeśli jesteśmy pewni, że za n lat nasz dochód wyniesie An zł, możemy zaciągnąć pożyczkę w wysokości: A = An•[1/(1+i)n] zł. Przy stopie procentowej i kwota, którą za n lat musimy zwrócić, wyniesie: A•(1+i)nzł=[An•[1/(1+i)n]•(1+i)n]zł=An zł. Tyle przecież będziemy mieli! W TEN SPOSÓB ZA-MIENIAMY PIENIĄDZE, JAKIE NA PEWNO DOSTANIEMY ZA N LAT, NA GOTÓWKĘ, KTÓRĄ MOŻEMY PŁACIC JUŻ DZISIAJ.

  25. A = An•[1/(1+i)n] zł. Kwotę A z naszego przykładu ekonomiści nazywają war-tością zaktualizowaną (ang. present value) kwoty An. Za-uważmy, że wartość zaktualizowana danej kwoty z przy-szłości zmienia się odwrotnie niż stopa procentowa. WARTOŚĆ ZAKTUALIZOWANA PRZYSZŁEJ KWO- TY TO SUMA, KTÓRA PRZY DANEJ STOPIE PRO- CENTOWEJ – DZIĘKI DZIAŁANIU PROCENTU SKŁADANEGO – ZMIENI SIĘ W TĘ PRZYSZŁĄ KWOTĘ.

  26. An = A•(1+i)n zł (ang. future value). A = An•[1/(1+i)n] zł (ang. present value).

  27. ZADANIE Po pierwszym roku eksploatacja pewnej maszyny (po odliczeniu wszystkich kosztów!) da czysty zysk równy 1100. Po drugim roku zysk wyniesie 1210, a po trzecim – 1331. Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Cena maszyny wynosi 3100. Czy warto ją kupić?

  28. Po pierwszym roku eksploatacja pewnej maszyny (po odliczeniu wszystkich kosztów!) da czysty zysk równy 1100. Po drugim roku zysk wyniesie 1210, a po trzecim – 1331. Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Cena maszyny wynosi 3100. Czy warto ją kupić? czas 0 • • • • 1100 1331 1210 ??? Założenia: in=10% π = 0.

  29. Po pierwszym roku eksploatacja pewnej maszyny (po odliczeniu wszystkich kosztów!) da czysty zysk równy 1100. Po drugim roku zysk wyniesie 1210, a po trzecim – 1331. Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Cena maszyny wynosi 3100. Czy warto ją kupić? czas 0 • • • • 1100 1331 1210 ??? Założenia: in=10% π = 0. 1100zł•1/[(1+i)1]+1210zł•1/[(1+i)2]+1331zł •1/[(1+i)3] = 1000 zł + 1000 zł + 1000 zł = 3000 zł.

  30. O MODELOWANIU I ZWIĄZKACH ZMIENNYCH

  31. ZADANIE W którym z następujących przypadków chodzi tylko o przypadek, a w którym o związek przyczynowy? a) Już kilka razy wzrostowi cen samochodów w Polsce towarzyszył spadek liczby kupowanych przez Polaków nowych samochodów. b) Zauważyłem, że liczba bocianów i liczba dzieci, które rodzą się w tej wsi, zmieniają się w tym samym kierunku. c) Kiedy euro jest drogie, import samochodów do Polski maleje. d) Jakim kryterium kierowałeś się, udzielając odpowiedzi? Odpo-wiedz szczegółowo.

  32. ZADANIE Jakie kłopoty powoduje: a) „Problem przypadkowego związku”? b) „Problem odwróconej przyczynowości”? c) „Problem ukrytej zmiennej”? d) Podaj przykłady spowodowanych tymi problemami błędów wy-jaśniania.

More Related