1 / 6

Séries chronologiques univariées (STT-6615)

Séries chronologiques univariées (STT-6615). Chapitre 1 Analyse exploratoire des données. Exemple: non-stationnarité en moyenne. Série chronologique: variations en température en degrés Celsius, période 1900-1997. On note une tendance à la hausse.

freya
Download Presentation

Séries chronologiques univariées (STT-6615)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Séries chronologiques univariées (STT-6615) Chapitre 1 Analyse exploratoire des données

  2. Exemple: non-stationnarité en moyenne • Série chronologique: variations en température en degrés Celsius, période 1900-1997. • On note une tendance à la hausse. • Cette tendance est un argument en faveur de l’hypothèse de réchauffement de la planète. • Est-ce que cette tendance est du à l’activité humaine ou est-ce que cette tendance est naturelle? • Dans cet exemple, la question de la tendance est plus importante que la question de l’identification des composantes périodiques. STT-6615; Séries chronologiques univariées; Chapitre 1

  3. Retrait de la tendance • Afin d’estimer la tendance linéaire, on peut utiliser les moindres carrés et la fonction lm(): • t <- 1:98 • fit <- lm( x ~ t ) • summary(fit) # regression output • Coefficients: • Value Std. Error t value Pr(>|t|) • (Intercept) -0.3946 0.0264 -14.9336 0.0000 • t 0.0062 0.0005 13.3974 0.0000 • residus <- x + 0.395 - 0.006*t STT-6615; Séries chronologiques univariées; Chapitre 1

  4. Différentiation • La commande S-PLUS diff() permet d’effectuer l’opération de différentiation. • Syntaxe: diff(x, lag=1, differences=1) • Exemples: • diff(x, lag=1, differences=1): (1-B)Xt = Xt-Xt-1 • diff(x, lag=2, differences=1): (1-B2)Xt = Xt – Xt-2 • diff(x, lag=1, differences=2): (1-B)2 Xt STT-6615; Séries chronologiques univariées; Chapitre 1

  5. Exemple: non-stationnarité en variance • Série chronologique: Fonte annuelle des glaciers au Massachusetts. • Taille: n = 634 ans, débutant il y a 11 834 ans. • Les fontes occasionnent des couches de terre et de boue durant la saison des fontes au printemps. • Les dépôts sédentaires sont des indicateurs de la température. Par exemple, durant une année chaude, on anticipe davantage de dépôts de terre et de boue. • La variation en épaisseur semble augmenter avec la quantité: une transformation log devrait faire l’affaire. STT-6615; Séries chronologiques univariées; Chapitre 1

  6. Outil graphique pour étudier les relations linéaires et non-linéaires: le lag-plot • Lorsque l’on représente visuellement l’ACF, nous représentons essentiellement des indices des relations linéaires entre Xt et Xt-h. • Ces autocorrélations ne mesurent pas les dépendances non-linéaires. • Il est suggéré d’effectuer des graphiques des variables Xt et Xt-h pour différentes valeurs des délais h. Ceci peut être fait avec lag.plot(). STT-6615; Séries chronologiques univariées; Chapitre 1

More Related