1 / 30

Lógica silogística

Lógica silogística. DEFINICIÓN LÓGICA DE CONCEPTO. REPRESENTACIONES DE LA REALIDAD. Carácter Intelectivo (mental, racional, abstracto) y formal Referencia a un objeto real o supuesto Por abstracción se concibe la forma del objeto, su esencia en su existencia real

gareth
Download Presentation

Lógica silogística

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lógica silogística

  2. DEFINICIÓN LÓGICA DE CONCEPTO REPRESENTACIONES DE LA REALIDAD • Carácter Intelectivo (mental, racional, abstracto) y formal • Referencia a un objeto real o supuesto • Por abstracción se concibe la forma del objeto, su esencia en su existencia real • Se expresa en términos o palabras • Intermedio entre el objeto y la palabra • Propiedades: extensión, y contenido (o comprensión o intención) • Palabra • Objeto • Imagen • Idea • Término • Definición • Signo • Símbolo • Lo percibido • Lo sentido • Lo imaginado • Lo recordado Por extensión Por contenido Simples – Complejos – Abstractos - Concretos Universales (género / especie) – Particulares - Individuales

  3. ALGUNAS CARACTERÍSTICAS DEL CONCEPTO - 1 • NO afirman ni niegan solo representan. • Carecen de color, tamaño, figura; no son imágenes. • Son captados por la inteligencia humana. • Mediante la sensación y la abstracción, o mediante un saber específico o un conocimiento determinado y sus leyes (por ejemplo, conocimiento jurídico) se logran captar sus características esenciales y accidentales. • Logran manifestarse o expresarse mediante palabras o términos.

  4. ALGUNAS CARACTERÍSTICAS DEL CONCEPTO - 2 • Se han llamado CATEGORÍAS a aquellos conceptos de mayor jerarquía que generan otros conceptos, es decir, son estructuras mentales para otros conceptos. • Para ARISTOTELES estos conceptos se suman a la esencia de una cosa mediante el verbo SER. Estos son: la cantidad, cualidad, relación, tiempo, lugar, posesión, situación, acción y pasión. • Para KANT dichas categorías son de cantidad: unidad, pluralidad, totalidad; cualidad: realidad, negación, limitación; relación: sustancia, causalidad, comunidad; y de modalidad: posibilidad, existencia y necesidad.

  5. Jerarquía y subordinación de los conceptos según el árbol lógico de Porfirio

  6. Expresión de conceptos: el término Es la expresión lógica de un concepto. Si bien varía según los idiomas, el concepto que expresa es el mismo: silla, chair, cadeira, chaise, etc. Dentro de un mismo idioma pueden existir distintos términos para expresar el mismo concepto, como se da en el caso de los sinónimos. Los términos se clasifican en: • Unívocos — Cuando terminantemente son susceptibles de un único significado: banco, planta, trapecio. • Equívocos — Cuando son susceptibles de emplearse con significados diferentes y requieren precisarse para concretarlos: ley (física, jurídica). • Análogos — Cuando teniendo significados claramente diferentes, no obstante esos significados son semejantes en cuanto a alguna propiedad: banco, silla, sofá.

  7. El juicio lógicoLa proposición

  8. El juicio lógico o proposición • El juicio constituye un pensamiento completo, que se soporta en la verdad. Toda ciencia se compone de juicios: leyes, principios, axiomas, postulados, teoremas, corolarios, etc. • Los juicios tienen como principal propiedad fundamental, su confrontación con la realidad para ser calificados de falso y verdadero. Por lo que se refiere al Derecho, los juicios de la lógica jurídica, pueden ser de validez o invalidez, legalidad o ilegalidad, constitucional o inconstitucional.

  9. El juicio lógico o proposición CARACTERÍSTICAS: 1. Es una asociación de una o varias ideas y conceptos por medio de una cópula o de un verbo con función copulativa. 2. Implica el sentido de AFIRMACIÓN o NEGACIÓN del ser o la acción de un sujeto. 3. Todo juicio tiene cuatro elementos: • a) Un cuantificador (partícula que expresa cantidad: todo, algún, ningún) • b)      Un término sujeto (expresa un concepto como sujeto). • c)      Una cópula (conector o verbo que relaciona sujeto – predicado). • d) Un término predicado (expresa un concepto como predicado). La forma lingüística de un juicio es la “proposición”

  10. Proposiciones (juicios lógicos)

  11. Tipos de juicios / proposiciones (1) Según el número de sujeto o predicado pueden ser: A- Simples o moleculares: un solo sujeto y sólo predicado B- Compuestas: varios sujetos y predicados varios sujetos y un predicado un sujeto y varios predicados.

  12. Tipos de juicios / proposiciones (2) Según la relación de la cópula, los juicios pueden ser: 1. SIMPLES • a)      Categóricos, si se refieren a la sustancia del concepto sujeto. No expresan limitaciones en la relación entre sujeto y predicado. Estas pueden ser de acuerdo con su cuantificador o delimitación: universales (el hombre es un animal), particulares (algún hombre es sabio), individuales (Jorge es pintor). 2. COMPUESTOS • b)      Hipotéticos o condicionales, si se refieren a la relación de causa entre sujeto y predicado. Establecen una condición para que se de la relación. • c)      Disyuntivos, si se refieren a la acción recíproca entre dos o más predicados. Proponen una alternativa para que se dé la relación. • d) Copulativos, si se refieren a la acción recíproca entre dos o más predicados. Exigen unidad para que se dé la relación.

  13. Las proposiciones categóricas Sirven para construir las relaciones básicas de los razonamientos CATEGÓRICOS. • Según las variaciones en la cantidad y en la cualidad de las proposiciones categóricas, existen cuatro tipos (llamados “formas típicas” de las proposiciones categóricas). Cada una está simbolizada por una letra vocal mayúscula, tomada de las palabras latinas “Affirmo” y “nego”, así: FORMAS TÍPICAS • a)      Universal y afirmativa A • b)      Universal y negativa E • c)      Particular y afirmativa I • d)      Particular y negativa O • Todas empiezan por un “cuantificador”,; un “término sujeto”; luego la “cópula”, que en el caso de la particular negativa va precedida de un “negador”; y un “término predicado”.

  14. Clasificación y formas típicasde las proposiciones categóricas

  15. Formas lógicas en el C.O.L. * Equivalencias / + Conversión *Todo S no es P *Ningún S no es P +: pasa a E - I +A (no) +I Alternas Alternas +I (no) +I *No todo S no es P *No todo S es P

  16. Cuadro de Oposiciones lógicas entre proposiciones – C.O.L. * equivalencias *Ningún hombre no es bueno *Todo hombre no es bueno *No todos los hombres son buenos *No todos los hombres no son buenos

  17. Cuadro de Oposiciones lógicas entre proposiciones

  18. Lenguaje lógico Se analiza la especie al usar el verbo SER como conector porque establece la relación de parte-todo. Lenguaje cotidiano Lenguaje lógico Las vacas regresan al establo Las vacas son creaturas que regresan al establo Los estudiantes de 2° están felices Todos los estudiantes de 2° son niños que están felices

  19. Formalización de enunciados – (A)Todo / a / os / as Cuantificadores UNIVERSALES AFIRMATIVOS: • Cada… • Cada uno… • Cualquier (a)… • Los / las… • El… (al inicio de párrafo) • Sólo (de solamente) Aseguran universalidad cuando se agrega en la mitad o al inicio de la proposición • “siempre” (de permanencia) • “sin excepción” • “invariablemente” • Combinación del condicional “Si” al inicio con la cópula “es” o “son”

  20. Formalización de enunciados – (E)Ningún / o / a Cuantificadores UNIVERSAL NEGATIVA: • “Ni uno” • “Nunca” • “Jamás” • En “ninguna circunstancia” • Nadie (para personas) • Nada (para cosas)

  21. Formalización de enunciados – (I – O)Alguno / a / os / as Cuantificadores PARTICULARES (I u O de acuerdo con negaciones) REGLA GENERAL: CUALQUIER COSA MAYOR QUE CERO PERO MENOR QUE TODOS ES “ALGÚN” Aseguran particularidad cuando se agrega en la mitad o al inicio de la proposición • Alguien (para personas) • Algo (para cosas) • “Hay” (de existencia) • “Aquellas” • “Éstas” • “Esas” • En “varias” • “Muchas veces” • “generalmente” • “frecuentemente” (siguen más cuantificadores I - O)

  22. Formalización de enunciados – (I – O) Alguno / a / os / as VIENE de Cuantificadores PARTICULARES (sean I u O): • “Uno de …” NUEVO • “ocasionalmente” • “Unas cuantas” • “Muy pocos” • “Casi todos” Lo anterior asegura el carácter negativo, pero permite asegurar la PARTICULARIDAD positiva (asegura la imposibilidad que la SUPERALTERNA [negativa] sea verdadera)

  23. Propiedades relativas de las proposiciones(reformado) Oposición (y sus leyes de verdad): Cuadro de Oposiciones Lógicas. Equivalencia : Se realiza mediante la negación del sujeto, del predicado, o de ambos (aplicar al cuadro), pero manteniendo los mismos sujeto y predicado. Conversión lógica (conservando la verdad o la falsedad) Consiste en intercambiar el sujeto por el predicado: • Feci • Eva • Asto • CASO ESPECIAL “A” • Casos especiales “I” (simetría): Relaciones transitivas (entre tres proposiciones. Anticipación al silogismo)

  24. La conversión (conservando valores) – NUEVO • "Feci" se convierte simplemente. Permanece la cantidad y la cualidad de proposición, v.g., ningún hombre es piedra (E), así ninguna piedra es hombre (E) • "Eva" se convierte “per accidens”. Cambia la cantidad de la proposición, v.g., "todos los hombres son mortales", así algunos mortales son hombres (A - I). • "Asto" se convierte por contraposición. Antepone al predicado la partícula "no" y cambia la cualidad de la proposición, v.g., algún hombre no es sabio" (O), de este modo: "alguien no sabio es hombre" (I). También, v.g.: "todo hombre es viviente, del siguiente modo: "todo no viviente no es hombre".   CASO ESPECIAL EN “A”: Entre universales afirmativas si el predicado está contenido en el sujeto. Ejemplo: definición triángulo. http://www.mercaba.org/Filosofia/summa_02-3.htm

  25. Casos especiales - conversión en “I” • Relaciones Simétricas: • Tipo 1 (igualdad). Cuando mantiene su verdad al invertir los términos. Ejemplos: Hawai está lejos de méxico, Jorge es tan fuerte como Juan, (3x2) es igual a 6, Elsa es diferente de María • Tipo 2 (mayor que, mejor que). Si la relación original es verdad la conversión es falsa. Ejemplos: José es más alto que Juan, México es más chico que París

  26. LEYES DE VERDAD DE LAS PROPOSICIONES OPUESTAS (A) 1. Cuando el predicado se deriva del sujeto, ejemplo: el triángulo es una figura geométrica con tres ángulos: 1.1. Dos proposiciones contradictorias, contrarias o subcontrarias no pueden ser ambas verdaderas ni ambas falsas. Si una es verdadera, la otra es falsa y viceversa. 1.2. En cambio, dos proposiciones subalternas son ambas verdaderas o ambas falsas

  27. LEYES DE VERDAD DE LAS PROPOSICIONES OPUESTAS (B) 2. Cuando el predicado no pertenece a la esencia del sujeto, sino que es materia contingente, entonces:2. 1. - Dos proposiciones contradictorias no pueden ser simultáneamente verdaderas, ni simultáneamente falsas. Ejemplo. Si A es verdadera O tiene que ser falsa. Esta ley es la fórmula lógica del principio de no contradicción.2.2. - Dos proposiciones contrarias no pueden ser simultáneamente verdaderas, pero pueden ser simultáneamente falsas. Ejemplo. Si E es verdadera, la A es falsa; pero si E es falsa, A puede ser verdadera o falsa.

  28. LEYES DE VERDAD DE LAS PROPOSICIONES OPUESTAS (C) Sigue: 2. Cuando el predicado no pertenece a la esencia del sujeto, sino que es materia contingente, entonces:2.3. - Dos proposiciones subcontrarias no pueden ser simultáneamente falsas, pero sí simultáneamente verdaderas. Ejemplo. Si la I es falsa, la O es verdadera, pero si I es verdadera, O puede ser verdadera o falsa. 2.4. - En cuanto a las proposiciones subalternas, (1) si la universal es verdadera, la particular también lo es, no al contrario: Es decir si A es verdadera I es verdadera. (2) Si la particular es falsa, también lo es la universal, no al contrario: si O es falsa, E es falsa. Pero el universal puede ser falso, y el particular, en cambio, verdadero: lo que es verdad de algunos puede no serlo del todo.

  29. Relaciones transitivas entre proposiciones – Análisis Vls de verdad (O que se trasladan) Inferencia de un tercer enunciado a partir de dos iniciales. Relación de un primer término con un segundo, de un segundo con un tercero, y del primero con el tercero. Ejemplo: 10 es mayor que 8, 8 es mayor que 6, entonces, 10 es mayor que 6. • Tipo 1. Conclusión sólida. Sigue el ejemplo anterior. • Tipo 2. Inferencia falsa. Ejemplo: 8x1=8, 7x1=7, 8x1=7x1 • Tipo 3. Conclusión indeterminada. Ejemplo: Martha está resentida con su hermano, su hermano está resentido con Felipe, por lo tanto, Martha está resentida con Felipe

  30. Enlaces • http://www.tuobra.unam.mx/publicadas/050707190037-Tipos.html • http://www.liceodigital.com/filosofia/logica.htm#inferencias • http://www.profesor-particular.com.es/logica/logica.html (contiene falacias, paradojas, deducciones, definiciones)

More Related