1 / 8

Pertemuan 10

Pertemuan 10. Geometri Projektif. Sasaran. Pengkajian tentang Teorema Pascal. Pokok Bahasan. Teorema Pascal. Teorema Pascal. Teorema 7.1

gili
Download Presentation

Pertemuan 10

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pertemuan 10 Geometri Projektif

  2. Sasaran Pengkajian tentang Teorema Pascal

  3. Pokok Bahasan Teorema Pascal

  4. Teorema Pascal Teorema 7.1 Misalkan ABCDEF adalah segienam dengan lingkaran luar konik (irisan kerucut dengan bidang datar). Misalkan R adalah titik potong sisi-sisi AB dan DE, S titik potong sisi-sisi BC dan EF, T titik potong sisi-sisi CD dan FA. Maka titik-titik R, S dan T kolinier.

  5. Bukti Teorema 7.1 Teorema Pascal khusus hanya melibatkan lingkaran L. Sedangkan Teorema Pascal (umum) melibatkan konik yaitu irisan kerucut dengan bidang datar yang berupa elips (termasuk lingkaran), hiperbola, atau parabola. Misalkan konik C adalah irisan bidang A dengan kerucut .

  6. Bukti Teorema 7.1 (lanjutan) Misalkan puncak kerucut adalah O, dan pandang bidang A sebagai subset dari P2. Terdapat bidang lain A’ sedemikian sehingga irisan dari kerucut dengan A’ adalah lingkaran. Jadi, pada A’ diagram kita adalah lingkaran seperti pada Teorema Pascal khusus, yang sudah dibuktikan. Dapat disimpulkan bahwa R, S danT kolinier.

  7. Gambar Teorema 7.1 A F B E D C T S R

  8. Catatan Konik dalam Geometri Projektif dapat dipandang sebagai kerucut, dan semua konik secara esensial adalah sama. Perbedaan antara elips, parabola atau hiperbola pada bidang A tergantung pada garis di tak berhingga (bidang lewat O sejajar dengan A) berturut-turut memotong kerucut di O, sejajar kerucut atau memotong kerucut dalam dua garis.

More Related