1 / 10

Grafice ale functiilor si Rolul derivatelor

Grafice ale functiilor si Rolul derivatelor. Tiselice Dragos. Rolul derivatei intai in studiu functiilor. Derivata intai a unei functii ne da informatii despre monotonia functiei si despre eventualele puncte de extrem ale acesteia .

ginata
Download Presentation

Grafice ale functiilor si Rolul derivatelor

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Grafice ale functiilorsiRolulderivatelor TiseliceDragos

  2. Rolulderivateiintai in studiufunctiilor • Derivataintai a uneifunctii ne da informatiidespremonotoniafunctieisidespreeventualelepuncte de extrem ale acesteia. • Functia f(x)=sin(x) are maxim in si minim in - ( f’()=0 si f’(-)=0).

  3. ConsecintaTeoremeiluilagrange • Consecinta: • daca f’(x)>0, x I, f este strict crescatoarepe I • dacaf’(x)<0, x I, f este strict descrescatoarepe I

  4. Exemplumonotonie • f: [0,2]R, f(x)=+x • f’(x)=2x+1, f’(x)>0 • f este strict crescatoarepe [0,2]

  5. Rolulderivatei a doua in studiufunctiilor • Intervale de convexitatesiconcavitate ale uneifunctii • f:IR • f esteconvexape I, daca, si [0,1] • f((1-)+)(1-)f()+f() adicadaca f’’(x)>0 • f esteconcavape I, daca, si [0,1] • f((1-)+)(1-)f()+f()adicadaca f’’(x)<0 • Concava: Convexa:

  6. Punctele de inflexiune ale uneifunctii • estepunct de inflexiune al functiei f daca f are derivata in sidacape I, de o perte a luifunctiaesteconvexa, iar de cealalta parte a luifunctiaesteconcava. • =0 estepunct de inflexiune • pentru f(x)=adica f’’(x)=0

  7. Reprezentareagrafica a functiilor • IDomeniul de definitie (determinare, interesectii cu axele, calcularea la capetesiasimptote) • II Derivataintai(rezolvareaecuatiei f’(x)=0, intervale de monotonie) • IIDerivata a doua (rezolvareaecuatiei f’’(x), intervale cu semn constant) • IV Tabelul de variatie (valoriremarcabile, f’(x), f’’(x), f(x)) • V Trasareagraficului

  8. Exemplu • f(x)= • I D=(-∞,-1]U[1, +∞) • Intersecteaza Ox in (-1,0) si (1,0) dar nu siOypentruca x0. • Asimptoteoblice y=si y= • II f’(x)=0 nu are solutii. • III f’’(x)=0 nu are solutii. IV

  9. grafic

  10. Bibliografie • Matematica – Manual pentruclasa a XI-a Editura Sigma 2003 • Matematicaclasaa XI-a “Elemente de analizamatematica” EdituraCarminis • Manual pentruclasa a XI-a “Elemente de analizamatematica” EdituraMathpress2003 • Exercitiisiprobleme de clasa a XI-a (si nu numai) EdituraBirchi • GazetaMatematicaEditie Electronica 1895-2004 Intuitext • Revista de Matematica din Timisoara Editie Electronica 1921-2006 Intuitext • http://rechneronline.de/function-graphs/

More Related