1 / 25

Systèmes de recommandation pour la TV numérique : un bref état de l’art

Systèmes de recommandation pour la TV numérique : un bref état de l’art. Charles Madeira. Programme de la TNT. La TV numérique Les systèmes de recommandation Quelques systèmes de recommandation proposés pour la TV numérique Discussion. TV numérique.

harsha
Download Presentation

Systèmes de recommandation pour la TV numérique : un bref état de l’art

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Systèmes de recommandation pour la TV numérique :un bref état de l’art Charles Madeira

  2. Programme de la TNT • La TV numérique • Les systèmes de recommandation • Quelques systèmes de recommandation proposés pour la TV numérique • Discussion

  3. TV numérique • Problématique dans le point de vue de l’IA • La TV numérique permet que ses utilisateurs accèdent à un très grand nombre d’émissions • Cela rend le choix des émissions long et pénible • Les guides électroniques de programmes (EPG) ont été mis en place afin d’augmenter l’accessibilité des émissions disponibles • La surcharge d’informations combinée à une interface graphique rudimentaire ne rend pas la vie des utilisateurs plus facile

  4. TV numérique • Solution générale [Ardissono et al. 2004] • Fournir des EPG personnalisés pour aider les utilisateurs dans le traitement du grand nombre d’informations disponibles • Voie adoptée • Les systèmes de recommandation • Domaine de recherche développé depuis le milieu des années 90 [Adomavicius et Tuzhilin 2005] • Un grand nombre de problèmes sont posés • Un grand nombre d’applications pratiques existent

  5. Systèmes de recommandation • Formalisation • N est un ensemble d’utilisateurs • S est un ensemble d’items (émissions dans le cas de la TV) qui peuvent être recommandés • V : N x S→ est une fonction d’évaluation à valeurs réelles qui indique l’intérêt d’un item s ЄS pour un utilisateur n ЄN • Chaque élément n ЄN peut être défini par un profil composé de plusieurs caractéristiques de l’utilisateur • L’âge, le sexe, la situation familiale, le niveau de scolarité, etc. • Chaque élément s ЄS peut être défini par plusieurs caractéristiques de l’item • Exemple d’une émission télévisée : • La chaîne, le titre, la catégorie, le producteur, les acteurs, la date de production, etc.

  6. Systèmes de recommandation • But • Pour chaque utilisateur n ЄN, un item s' ЄS doit être sélectionné afin de maximiser la satisfaction de l’utilisateur • Problème central • Les items qui n’ont pas encore été évalués par chaque utilisateur doivent être évalués automatiquement dans le cadre du processus de recommandation • La fonction d’évaluation V doit être extrapolée à l’ensemble N x S • à l’aide d’heuristiques validées empiriquement • à l’aide d’un modèle qui maximise un certain critère de performance

  7. Systèmes de recommandation • Classement adopté par la communauté [Balabanovic et Shoham 1997] • Approches fondées sur le contenu • Le système recommande des items similaires à ceux que l’utilisateur a déjà apprécié précédemment • Il est nécessaire de se doter d’une mesure de corrélation entre les différents items permettant d’apprécier leur degré de ressemblance • Approches fondées sur la collaboration • Le système recommande des items apprécies précédemment par d’autres utilisateurs qui ont des préférences similaires • Il est nécessaire de se doter d’une mesure de corrélation entre les utilisateurs • Approches hybrides • Combinaison de deux approches ci-dessus

  8. Systèmes de recommandation • Toutes les approches requièrent un profil de l’utilisateur contenant de l’information sur ses goûts, préférences et besoins • Ce profil peut être obtenu • Explicitement (questionnaires) • Le plus précis bien qu’il puisse avoir une disparité entre l’auto-description et le comportement réel • Les recommandations peuvent être faites rapidement • Il nécessite un niveau d’effort considérable de la part de l’utilisateur • Implicitement • A partir des comportements de l’utilisateur • Il permet d’appréhender les comportements réels de l’utilisateur • Il faut attendre le rassemblement de l’information implicite nécessaire • L’interprétation des comportements réels peut être trompeuse • Un utilisateur peut par exemple regarder une émission sans vraiment l’aimer • A partir des préférences identifiées pour un groupe d’utilisateurs

  9. Approches fondées sur le contenu • Les avantages • La recommandation peut être réglée selon les préférences personnelles d’un utilisateur individuel • Les inconvénients • Dépendance aux caractéristiques associées au contenu • L’extraction d’information est difficile dans le cas des données multimédia • Deux items distincts représentés par la même information ne peuvent pas être différenciés • Sur-spécialisation • La recommandation se restreint aux items similaires à ceux déjà appréciés par l’utilisateur • Doublons de recommandation peuvent se produire lorsque des items distincts désignent un même contenu • Ajout de nouveaux utilisateurs • Le système n’est pas capable de recommander efficacement avant d’obtenir un nombre suffisant d’appréciations de la part de l’utilisateur

  10. Approches fondées sur le contenu • Les techniques couramment employées • Celles fondées sur des heuristiques [Lang 1995; Balabanovic et Shoham 1997; Pazzani et Billsus 1997] • TF-IDF (extraction d’information) • Clustering • Celles fondées sur des modèles [Pazzani et Billsus 1997; Mooney et al. 1998; Mooney et Roy 1999; Billsus et Pazzani 1999, 2000; Zhang et al. 2002] • Classifieurs bayésiens • Clustering • Arbres de décision • Réseaux de neurones artificiels

  11. Approches fondées sur la collaboration • Les avantages • La recommandation peut être faite même si les traces sur les comportements de l’utilisateur ne sont pas disponibles • Il n’y a pas de sur-spécialisation • Les inconvénients • Ajout de nouveaux items • Le système n’est pas capable de recommander un item avant qu’il ne soit suffisamment apprécié par les utilisateurs • Ajout de nouveaux utilisateurs • Le système n’est pas capable de recommander efficacement avant d’obtenir un nombre suffisant d’appréciations de la part de l’utilisateur • Pénurie d’utilisateurs • Une masse critique d’utilisateurs est requise pour que l’appréciation générale d’un item soit crédible

  12. Approches fondées sur la collaboration • Les techniques couramment employées • Celles fondées sur des heuristiques [Resnick et al. 1994; Hill et al. 1995; Shardanand et Maes 1995; Breese et al. 1998; Nakamura et Abe 1998; Aggarwal et al. 1999; Delgado et Ishii 1999; Pennock et Horwitz 1999; Sarwar et al. 2001] • Algorithme des plus proches voisins • Clustering • Théorie des graphes • Celles fondées sur des modèles [Billsus et Pazzani 1998; Pennock et Horwitz 1999; Geyer-Schulz et al. 2000; Goldberg et al. 2001; Pavlov et Pennock 2002; Shani et al. 2002; Yu et al. 2002, 2004; Hofmann 2003, 2004; Marlin 2003; Si et Jin 2003] • Réseaux bayésiens • Clustering • Réseaux de neurones artificiels • Régression linéaire • Modèles probabilistes • Algorithmes évolutionnaires interactifs

  13. Approches hybrides • Les avantages • La recommandation peut être faite lorsqu’un item est bien apprécié • par un ensemble d’utilisateurs qui présentent des profils similaires • par l’utilisateur lui-même • La pénurie d’utilisateurs n’est pas un problème si important • Des résultats empiriques démontrent que les recommandations sont plus efficaces que dans le cadre des approches dites pures • C’est l’approche communément adoptée ces dernières années • Les inconvénients • Ajout de nouveaux utilisateurs • Ajout de nouveaux items

  14. Approches hybrides • Les techniques couramment employées • Celles fondées sur des heuristiques [Balabanovic et Shoham 1997; Claypool et al. 1999; Good et al. 1999; Pazzani 1999; Billsus et Pazzani 2000; Tran et Cohen 2000; Melville et al. 2002] • Combinaison linéaire des appréciations • Schémas du vote • Introduction de certaines caractéristiques d’une approche dans la heuristique adoptée par l’autre • Celles fondées sur des modèles [Basu et al. 1998; Condliff et al. 1999; Soboroff et Nicholas 1999; Ansari et al. 2000; Popescul et al. 2001; Schein et al. 2002] • Introduction de certaines caractéristiques d’une approche dans le modèle adopté par l’autre • Construction d’un modèle général unifié

  15. Comment améliorer davantage l’efficacité des recommandations ? • Comprendre mieux les utilisateurs et les items • Employer des techniques avancées de profilage • Règles d’exploitation des données [Fawcett et Provost 1996; Adomavicius et Tuzhilin 2001] • Séquences [Mannila et al. 1995] • Signatures [Cortes et al. 2000] • Introduire le contexte dans la procédure de recommandation • Par exemple • Quand, où et avec qui une émission est vue ? • Quel est l’état émotionnel de l’utilisateur ?

  16. Comment améliorer davantage l’efficacité des recommandations ? • Permettre une appréciation multicritères • Par exemple • Repas, décoration et service dans un restaurant • Fournir des recommandations plus flexibles et moins intrusives • Permettre une customisation des recommandations selon les besoins des utilisateurs • L’utilisateur « fais-le pour moi » • Un système totalement autonome • L’utilisateur « faisons-le ensemble » • Un système partiellement contrôlable • L’utilisateur « laisse-moi contrôler » • Un système totalement contrôlable

  17. Les systèmes de recommandation d’émissions télévisées • Les systèmes de recommandation conçus pour la TV sont souvent fondés sur • Une combinaison d’un profil explicite et d’un ou plusieurs profils implicites • Des approches basées sur le contenu ou hybrides

  18. Les systèmes de recommandation fondés sur le contenu • [Buczak et al. 2002] • Profil • Explicite • Questionnaire sur les préférences de l’utilisateur (chaîne, genre d’émission, jours et périodes de la journée) • Implicite (traces d’utilisation – utilisateur individuel et ménage) • Réseaux bayésiens • Arbres de décision • Un réseau de neurones artificiels du type RBF fusionne les recommandations faites par chacun des profils • Métriques d’évaluation • Receiver operating characteristic • Erreur quadratique moyenne • Interface utilisateur flexible • Elle permet que la recommandation soit contrôlée par l’utilisateur

  19. Les systèmes de recommandation fondés sur le contenu • [Yu et al. 2004] • Profil • Explicite • Questionnaire sur les préférences de l’utilisateur • Implicite (traces d’un utilisateur) • Classifieurs bayésiens • Métrique d’évaluation • Pourcentage du temps écoute • Seuil pour distinguer positif et négatif • Seuil pour jeter certains changements de chaîne • Rappel et précision

  20. Les systèmes de recommandation fondée sur le contenu • [Ludwig et al . 2006] • Comprendre comment les utilisateurs choisissent des émissions afin d’améliorer la flexibilité du système • Profil • Explicite (questionnaire sur les préférences de l’utilisateur) • La description textuelle des émissions est prise en compte • Les mots sont groupés selon des thèmes prédéfinis • Ils sont traités afin de refléter les besoins émotionnels des utilisateurs • 107 attitudes émotionnelles sont modélisées

  21. Les systèmes de recommandation hybrides • [Dai et Cohen 2003] • Profil • Explicite • Questionnaire sur l’utilisateur et ses préférences • Implicite (traces d’un utilisateur) • Pseudo (groupe d’utilisateurs ayant intérêts similaires) • Métrique d’évaluation • Pourcentage du temps écoute (seuil pour distinguer positif et négatif) • Architecture centralisée • Service disponible à partir d’un fournisseur câble ou satellite

  22. Les systèmes de recommandation hybrides • [Potonniée 2004] • Traitement des problèmes de l’ubiquité et de l’intimité des utilisateurs • Profil • Explicite (questionnaire sur l’utilisateur) • Profil implicite (traces d’un utilisateur) • Schémas du vote (contenu) • Arbres de décision (collaboratif) • Métriques d’évaluation • Erreur absolue moyenne • Receiver operating characteristic • Seuil pour distinguer utile et inutile • Architecture décentralisée • Carte à puce qui enregistre et contrôle l’accès au profil

  23. Les systèmes de recommandation hybrides • SenSee [Aroyo et al. 2007] • Framework pour « Ambient Home Media » • Web et Set-top Box • Le profil explicite de l’utilisateur et le contexte sont pris en compte • Période de la journée, localisation géographique, thèmes d’intérêt • Une ontologie est employée afin de traiter des concepts et des termes sémantiques des métadonnées • Spécification : TV-Anytime, MPEG7 • User preference description scheme • Usage history description scheme • Sources : XMLTV, BBC Backstage

  24. Les systèmes de recommandation hybrides • AIMED [Hsu et al. 2007] • Activités, intérêts, état émotionnel, expériences and information démographique • Profil • Explicite (questionnaire sur l’utilisateur et ses préférences) • Implicite • Traces d’un utilisateur (contenu) • Clustering hiérarchique (collaboration) • Un réseaux de neurones artificiels du type BPN est employé pour fusionner toutes les données • Métrique d’évaluation • Erreur quadratique moyenne

  25. Discussion

More Related