1k likes | 2.68k Views
INTRODU??O E HIST?RICO Marcadores Moleculares. Gen?tica. ?arte" e sele??o inconscienteda inven??o da agricultura at? s?c. XIX1900s - Descoberta dos princ?pios gen?ticos1920-50 - Melhoramento gen?tico cient?ficogen?tica quantitativa e biometria(fen?tipo ? previsor ruim do valor gen?tico!)1970-
E N D
1. Marcadores Moleculares Introdução e Histórico
Descrição de Marcadores
Comparação entre Marcadores Moleculares
Classificação de Marcadores Moleculares
Características do Genoma de Planta
Aplicações
diversidade genética
mapeamento e seleção assistida
2. INTRODUÇÃO E HISTÓRICOMarcadores Moleculares
3. Genética “arte” e seleção inconsciente
da invenção da agricultura até séc. XIX
1900s - Descoberta dos princípios genéticos
1920-50 - Melhoramento genético científico
genética quantitativa e biometria
(fenótipo é previsor ruim do valor genético!)
1970-80 - Utilização de marcadores genéticos moleculares
4. Sucesso no melhoramento depende da capacidade de distinguir fatores genéticos herdáveis dos ambientais
Marcadores genéticos são unidades herdáveis simples
5. Polimorfismo de DNA resulta acúmulo de mutações
pontual ou inserção/deleção
macro-rearranjos: translocações, inversões, deleções
7. Histórico de Marcadores 1. Karl Sax (1923): propôs método para localização de QTLs
ligação entre genes de característica qualitativa (cor de semente) e quantitativa (peso de semente);
Problema: ausência de mutações múltiplas em estoque de elite, baixa viabilidade
2. Hunter & Markert (1957) - marcas bioquímicas
desenvolveram isoenzimas em gel de amido
8. Histórico de Marcadores 3. Hubby & Lewotin (1966)
demonstraram que 30% de loci de isoenzimas exibiam polimorfismo em populações selvagens de Drosophila;
4. 1970’s - ferramentas moleculares
desenvolvimento de vetores de clonagem; enzimas de restrição; polimerases; ligases; Southern (1977);
9. Histórico de Marcadores 5. RFLP proposto por Botstein et al. (1980)
descrito para humanos
6. PCR proposto por Mullis & Faloona (1987)
7. VNTR por Jeffrey (1987)
8. RAPD por Rafalski et al. (1990)
10. Histórico de Marcadores 9. SSR em plantas por Akkaya et al. (1992)
10. AFLP por Zabeau & Vos (1993)
11. CAPS por Konieczny & Ausubel (1993)
12. SCAR por Paran & Michelmore (1993)
13. Cho et al. (1999) - SNPs em Arabidopsis
11. DESCRIÇÃO DOS MARCADORES MOLECULARES
12. Marcadores Moleculares RFLP
VNTR (minissatélite)
RAPD, AP-PCR, DAF
PCR-específico - SSR, ISSR, CAPS, SCARs
AFLP
SNPs
13. Restriction Fragment Length Polymorphism - RFLP RFLP examina diferença em tamanho de fragmentos de restrição de DNA específicos
Polimorfismo deriva de mutação pontual, inserção, deleção
Utiliza-se DNA celular total
Requer DNA puro de alto peso molecular
14. Metodologia de RFLP 1 . Digerir DNA em fragmentos pequenos
2. Separação dos fragmentos por gel eletroforese
3. Transferência de fragmentos de DNA para filtro
15. Metodologia de RFLP 4. Visualização dos fragmentos de DNA
sondas marcadas (32P) ou a frio
5. Análise dos resultados
bandas analisadas para alelos e/ou presença/ausência
diferenças em padrão de bandas reflete diferenças genéticas
A escolha de sonda/enzima de restrição é crucial
16. Digestão de DNA Genômico e Separação em Gel
17. Transferência para Membrana de Nylon ou Nitrocelulose
18. Hibridização em Nylon ou Nitrocelulose
19. Construção de biblioteca genômica ou de cDNA
22. Interpretação de resultados
26. Herança de RFLPs
27. Análise de Diversidade e Filogenia por RFLP
28. RFLP: sondas de locos único DNA Nuclear
biblioteca genômica
biblioteca de cDNA
DNA Citoplasmático
biblioteca de DNA cloroplástico e mitocondrial
Sondas de RFLP são:
locos-específica, co-dominante
espécie-específica
29. RFLP: sondas multi-locus Repetições em linha (tandem) - útil
encontrada em vários loci
altamente polimórficas
Sequência de Minissatélite
VNTR: variable number of tandem repeats
uso em “DNA fingerprinting”
uso de seqüências repetidas de fago M13
30. Interpretação dos resultados
31. Vantagens e Desvantagens de RFLP Reprodutível
Marcadores co-dominantes
Simples
Trabalhoso
Caro
Uso de sondas radioativas*
32. Random Amplification of Polymorphic DNA - RAPD Amplifica seqüências anônimas de DNA usando primers arbitrários
10 bases com >50% G+C
PCR com um único primer
Método rápido para detecção de polimorfismos
Marcador dominante
Problemas de reproducibilidade The random amplified polymorphic DNA (RAPD) technique is a PCR based method which uses one or sometimes two short arbitrary primers (usually 8-10 bases) to amplify anonymous stretches of DNA which are then separated and visualised by gel electrophoresis. The key point about this technique is that nothing is known about the identity of the amplification products. The amplification products are however extremely useful as markers in genetic diversity studies. Other important features of the technique are:
The number of fragments. Many different fragments are normally amplified using each single primer, and the technique has therefore proved a fast method for detecting polymorphisms. The majority of commercially produced primers result in 6 to 12 fragments; some primers may fail to give any amplification fragments from some material.
Simplicity of the technique. RAPD analysis does not involve hybridisation/autoradiography or high technical expertise. Only tiny quantities of target DNA are required. Arbitrary primers can be purchased. Unit costs per assay are low. This has made RAPD analysis very popular.
RAPD markers are dominant. Amplification either occurs at a locus or it does not, leading to scores of band presence/absence; this means that homozygotes and heterozygotes cannot be distinguished.
Problems of reproducibility - RAPD does suffer from a sensitivity to changes in PCR conditions resulting in changes to some of the amplified fragments. Reproducible results can be obtained if care is taken to standardise the conditions used (Munthali et al., 1992; Lowe et al., 1996). The random amplified polymorphic DNA (RAPD) technique is a PCR based method which uses one or sometimes two short arbitrary primers (usually 8-10 bases) to amplify anonymous stretches of DNA which are then separated and visualised by gel electrophoresis. The key point about this technique is that nothing is known about the identity of the amplification products. The amplification products are however extremely useful as markers in genetic diversity studies. Other important features of the technique are:
The number of fragments. Many different fragments are normally amplified using each single primer, and the technique has therefore proved a fast method for detecting polymorphisms. The majority of commercially produced primers result in 6 to 12 fragments; some primers may fail to give any amplification fragments from some material.
Simplicity of the technique. RAPD analysis does not involve hybridisation/autoradiography or high technical expertise. Only tiny quantities of target DNA are required. Arbitrary primers can be purchased. Unit costs per assay are low. This has made RAPD analysis very popular.
RAPD markers are dominant. Amplification either occurs at a locus or it does not, leading to scores of band presence/absence; this means that homozygotes and heterozygotes cannot be distinguished.
Problems of reproducibility - RAPD does suffer from a sensitivity to changes in PCR conditions resulting in changes to some of the amplified fragments. Reproducible results can be obtained if care is taken to standardise the conditions used (Munthali et al., 1992; Lowe et al., 1996).
33. RAPD The random amplified polymorphic DNA (RAPD) technique is a PCR based method which uses one or sometimes two short arbitrary primers (usually 8-10 bases) to amplify anonymous stretches of DNA which are then separated and visualised by gel electrophoresis. The key point about this technique is that nothing is known about the identity of the amplification products. The amplification products are however extremely useful as markers in genetic diversity studies. Other important features of the technique are:
The number of fragments. Many different fragments are normally amplified using each single primer, and the technique has therefore proved a fast method for detecting polymorphisms. The majority of commercially produced primers result in 6 to 12 fragments; some primers may fail to give any amplification fragments from some material.
Simplicity of the technique. RAPD analysis does not involve hybridisation/autoradiography or high technical expertise. Only tiny quantities of target DNA are required. Arbitrary primers can be purchased. Unit costs per assay are low. This has made RAPD analysis very popular.
RAPD markers are dominant. Amplification either occurs at a locus or it does not, leading to scores of band presence/absence; this means that homozygotes and heterozygotes cannot be distinguished.
Problems of reproducibility - RAPD does suffer from a sensitivity to changes in PCR conditions resulting in changes to some of the amplified fragments. Reproducible results can be obtained if care is taken to standardise the conditions used (Munthali et al., 1992; Lowe et al., 1996). The random amplified polymorphic DNA (RAPD) technique is a PCR based method which uses one or sometimes two short arbitrary primers (usually 8-10 bases) to amplify anonymous stretches of DNA which are then separated and visualised by gel electrophoresis. The key point about this technique is that nothing is known about the identity of the amplification products. The amplification products are however extremely useful as markers in genetic diversity studies. Other important features of the technique are:
The number of fragments. Many different fragments are normally amplified using each single primer, and the technique has therefore proved a fast method for detecting polymorphisms. The majority of commercially produced primers result in 6 to 12 fragments; some primers may fail to give any amplification fragments from some material.
Simplicity of the technique. RAPD analysis does not involve hybridisation/autoradiography or high technical expertise. Only tiny quantities of target DNA are required. Arbitrary primers can be purchased. Unit costs per assay are low. This has made RAPD analysis very popular.
RAPD markers are dominant. Amplification either occurs at a locus or it does not, leading to scores of band presence/absence; this means that homozygotes and heterozygotes cannot be distinguished.
Problems of reproducibility - RAPD does suffer from a sensitivity to changes in PCR conditions resulting in changes to some of the amplified fragments. Reproducible results can be obtained if care is taken to standardise the conditions used (Munthali et al., 1992; Lowe et al., 1996).
34. Interpretação de RAPDs Marcadores RAPD são anônimos
Dados binários (presença x ausência)
RAPD são dominantes (AA = Aa)
Problemas de co-migração
mesma banda, mesmo fragmento?
uma banda, um fragmento?
Questionamento para filogenia
banda homólogas?
35. PCR com primers arbitrários: acúmulo de siglas! RAPD
Random Amplified Polymorphic DNA
DAF
DNA Amplification Fingerprinting
AP-PCR
Arbitrarily Primed Polymerase Chain Reaction
MAAP
Multiple Arbitrary Amplicon Profiling (sugerido por incluir todas as pequenas variações na técnica) All of the following techniques use one or two, short, GC-rich primers of arbitrary sequence. RAPD was the first to become available (Williams et al., 1990) and is by far the most commonly used of these techniques.
DAF - DNA amplication fingerprinting
Differences between DAF (Caetano-Anolles, et al., 1991a,b) and RAPD:
higher primer concentrations in DAF
shorter primers used in DAF (5-8 nucleotides)
two-temperature cycle in DAF compared to 3-temperature cycle in RAPD
DAF usually produces very complex banding patterns
AP-PCR - arbitrarily primed polymerase chain reaction
Differences between AP-PCR (Welsh and McClelland, 1990) and RAPD:
in AP-PCR the amplification is in three parts each with its own stringency and concentrations of constituents
high primer concentrations are used in the first PCR cycles
primers of variable length, and often designed for other purposes are arbitrarily chosen for use (e.g. M13 universal sequencing primer)
MAAP is only an acronym proposed by Caetano-Anolles et al. (1992) to encompass all of these closely related techniques, but which is not commonly used.All of the following techniques use one or two, short, GC-rich primers of arbitrary sequence. RAPD was the first to become available (Williams et al., 1990) and is by far the most commonly used of these techniques.
DAF - DNA amplication fingerprinting
Differences between DAF (Caetano-Anolles, et al., 1991a,b) and RAPD:
higher primer concentrations in DAF
shorter primers used in DAF (5-8 nucleotides)
two-temperature cycle in DAF compared to 3-temperature cycle in RAPD
DAF usually produces very complex banding patterns
AP-PCR - arbitrarily primed polymerase chain reaction
Differences between AP-PCR (Welsh and McClelland, 1990) and RAPD:
in AP-PCR the amplification is in three parts each with its own stringency and concentrations of constituents
high primer concentrations are used in the first PCR cycles
primers of variable length, and often designed for other purposes are arbitrarily chosen for use (e.g. M13 universal sequencing primer)
MAAP is only an acronym proposed by Caetano-Anolles et al. (1992) to encompass all of these closely related techniques, but which is not commonly used.
36. Diferenças entre ensaios com primers arbitrários RAPD
10mers, gel de agarose corado com brometo
DAF
5mers, gel de acrilamida e reação marcada 32P
AP-PCR
10mers, gel de acrilamida e reação marcada 32P All of the following techniques use one or two, short, GC-rich primers of arbitrary sequence. RAPD was the first to become available (Williams et al., 1990) and is by far the most commonly used of these techniques.
DAF - DNA amplication fingerprinting
Differences between DAF (Caetano-Anolles, et al., 1991a,b) and RAPD:
higher primer concentrations in DAF
shorter primers used in DAF (5-8 nucleotides)
two-temperature cycle in DAF compared to 3-temperature cycle in RAPD
DAF usually produces very complex banding patterns
AP-PCR - arbitrarily primed polymerase chain reaction
Differences between AP-PCR (Welsh and McClelland, 1990) and RAPD:
in AP-PCR the amplification is in three parts each with its own stringency and concentrations of constituents
high primer concentrations are used in the first PCR cycles
primers of variable length, and often designed for other purposes are arbitrarily chosen for use (e.g. M13 universal sequencing primer)
MAAP is only an acronym proposed by Caetano-Anolles et al. (1992) to encompass all of these closely related techniques, but which is not commonly used.All of the following techniques use one or two, short, GC-rich primers of arbitrary sequence. RAPD was the first to become available (Williams et al., 1990) and is by far the most commonly used of these techniques.
DAF - DNA amplication fingerprinting
Differences between DAF (Caetano-Anolles, et al., 1991a,b) and RAPD:
higher primer concentrations in DAF
shorter primers used in DAF (5-8 nucleotides)
two-temperature cycle in DAF compared to 3-temperature cycle in RAPD
DAF usually produces very complex banding patterns
AP-PCR - arbitrarily primed polymerase chain reaction
Differences between AP-PCR (Welsh and McClelland, 1990) and RAPD:
in AP-PCR the amplification is in three parts each with its own stringency and concentrations of constituents
high primer concentrations are used in the first PCR cycles
primers of variable length, and often designed for other purposes are arbitrarily chosen for use (e.g. M13 universal sequencing primer)
MAAP is only an acronym proposed by Caetano-Anolles et al. (1992) to encompass all of these closely related techniques, but which is not commonly used.
37. RAPD - resumo Rápido
Simples
Baixo custo
Sem uso de radio-isótopos
Marcador dominante
Problemas de reproducibilidade
Problemas de interpretação
40. Sítio de Seqüência Dirigida(Sequence-tagged sites) Sequence-Tagged Microssatélites (STMS) ou SSR ou Microssatélites
Microssatélites ancorados
Inter-Simple Sequence Repeat (ISSR)
Sequence-characterized amplified regions (SCARs)
Cleaved amplified polymorphic sequence (CAPS) – PCR-RFLP More and more sequence information is becoming available from different sources and can be located in widely available databases. This information is extremely useful for developing new strategies for the analysis of genetic variation. A sequence-tagged site (STS) is the general term given to a marker which is defined by its primer sequences (Olsen et al., 1989). STSs have been used extensively for mapping of the human genome. Examples of STSs are given in the following slides, namely:
Sequence-tagged microsatellites (STMS)
also known as Simple Sequence Repeat Polymorphisms (SSRP)
Anchored microsatellite oligonucleotides
including inter-simple sequence repeat (ISSR) primers
Sequence-characterised amplified regions (SCARs)
Cleaved amplified polymorphic sequence (CAPS)More and more sequence information is becoming available from different sources and can be located in widely available databases. This information is extremely useful for developing new strategies for the analysis of genetic variation. A sequence-tagged site (STS) is the general term given to a marker which is defined by its primer sequences (Olsen et al., 1989). STSs have been used extensively for mapping of the human genome. Examples of STSs are given in the following slides, namely:
Sequence-tagged microsatellites (STMS)
also known as Simple Sequence Repeat Polymorphisms (SSRP)
Anchored microsatellite oligonucleotides
including inter-simple sequence repeat (ISSR) primers
Sequence-characterised amplified regions (SCARs)
Cleaved amplified polymorphic sequence (CAPS)
41. Microssatélites (SSR) Sequence-Tagged Microsatélites (STMS)
também conhecido como microssatélite ou Simple Sequence Repeat (SSR)
Normalmente locus simples e multi-alélico
Co-dominante
Altamente reprodutível
42. Microssatélites STMS ou SSRs
Seqüências curtas (1 a 6 bases) repetidas em tandem
Presentes em procariotos e eucariotos
Presentes em regiões codificantes e não codificantes
Maioria das repetições são dinucleotídeos
(AC) n (AG) n (AT)n
43. Polimorfismo devido a diferenças no número de repetições
Escorregamento da DNA polimerase durante a replicação
Crossing-over desigual entre cromátides irmãs
Codominantes
Normalmente locos simples e multi-alélico
Microssatélites
44. Microssatélites (SSR) altamente informativo - vários alelos por locos
detecção por PCR
facilmente transferível entre labs
distribuição homogênea no genoma
45. Microssatélites (SSR)
46. Microssatélites (SSR) Obtenção de seqüências:
a partir de banco de dados de genoma ou cDNA
hibridação com biblioteca genômica, identificação de clones e seqüenciamento
construção de biblioteca enriquecida por afinidade com seqüência da matriz
47. Detecção do polimorfismo
Géis de agarose
Géis de acrilamida (detecta diferenças de até 2pb)
coloração direta: nitrato de prata (barato)
Coloração indireta: marcação radioativa ou fluorescente Microssatélites
48. Problemas
Custo e trabalho envolvidos no desenvolvimento dos primers
Construção de bibliotecas genômica
sequenciamento
Triagem dos melhores primers
?Possibilidade de se usar seqüências depositadas em banco de dados
EST – SSR funcional x SSR genômico
Microssatélites
49. Microssatélites (SSR)
55. Microssatélites (SSR)
56. Microssatélites (SSR)
58. MicrossatélitesBananeira 3x e 4xCir 24.25
59. Microssatélites
60. Microssatélites Ancorados ISSR Amplificação de segmentos genômicos flanqueados por repetições
Anelamento locos-específico
Inter-simple sequence repeats (ISSR)
ancorados na extremidade 3’ ou 5’
Marcadores dominantes
Microssatélites mais úteis que minissatélites
61. Microssatélites Ancorados ISSR
62. ISSRUBC 811 UBC 816
63. SCARs SCARs - sequence-characterised amplified regions
proposto por Paran & Michelmore (1993)
marcador locus-único derivado de fragmentos sequenciados de RAPD, ISSR, AFLP
maior estabilidade - primers específicos
analisado para presença/ausência
possibilidade de simplificação de análise e automação
64. SCARs
66. CAPS ou PCR-RFLP CAPS - cleaved amplified polymorphic sequence
marcador locus-específico
produto amplificado por PCR e analisado por RFLP
seqüência de banco de dados, clones de cDNA ou genômico
codominante
67. CAPS
70. Amplified Fragment Length Polymorphism - AFLP Combinação de RFLP e PCR
Resulta em padrões muito informativos
Marcador dominante
Método cada vez mais usado
74. AFLP de cana com 33P
75. AFLP de feijãogel desnaturante corado com prata
77. COMPARAÇÃO ENTRE MARCADORES MOLECULARES
78. Escolha de Marcadores Característica RFLP RAPD SSR AFLP ISSR CAPS
Polimorfismo Pontual Pontual # Pontual Pontual Pontual
InDel InDel Rep. InDel InDel InDel
Nível de
Polimorfismo médio médio alto médio médio baixo
Abundância alta m.alta média m.alta média alta
Dominância CoDom Dom CoDom Dom Dom CoDom
[DNA] 10 mg 25 ng 50 ng 500 ng 25 ng 25 ng
Seqüência não não sim não não sim
Marcação sim/não não não sim/não não não
Repetibilidade alta baixa alta média baixa alta
79. CLASSIFICAÇÃO DE MARCADORES MOLECULARES
80. Classificação por Tipo de Técnica Métodos sem uso de PCR
RFLP
VNTR
Métodos com uso de PCR
PCR com primers arbitrários
RAPD, AP-PCR, DAF, MAAP;
Polimorfismo de Tamanho de Fragmento Amplificado AFLP;
ISSR
PCR sítio-específico
CAPS, SCAR
SSRs (microssatélites)
TGGE, SSCP, DGGE
81. Classificação por Número de Cópias da Seqüência Alvo Seqüência de poucas cópias - codificante
RFLP
Seqüência com cópias repetidas
VNTR
SSRs (microssatélites)
ISSR
Seqüência com número de cópias indefinido
RAPD, AP-PCR, DAF, MAAP;
AFLP;
CAPS, SCAR