1 / 80

Marcadores Moleculares

INTRODU??O E HIST?RICO Marcadores Moleculares. Gen?tica. ?arte" e sele??o inconscienteda inven??o da agricultura at? s?c. XIX1900s - Descoberta dos princ?pios gen?ticos1920-50 - Melhoramento gen?tico cient?ficogen?tica quantitativa e biometria(fen?tipo ? previsor ruim do valor gen?tico!)1970-

henrietta
Download Presentation

Marcadores Moleculares

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


    1. Marcadores Moleculares Introdução e Histórico Descrição de Marcadores Comparação entre Marcadores Moleculares Classificação de Marcadores Moleculares Características do Genoma de Planta Aplicações diversidade genética mapeamento e seleção assistida

    2. INTRODUÇÃO E HISTÓRICO Marcadores Moleculares

    3. Genética “arte” e seleção inconsciente da invenção da agricultura até séc. XIX 1900s - Descoberta dos princípios genéticos 1920-50 - Melhoramento genético científico genética quantitativa e biometria (fenótipo é previsor ruim do valor genético!) 1970-80 - Utilização de marcadores genéticos moleculares

    4. Sucesso no melhoramento depende da capacidade de distinguir fatores genéticos herdáveis dos ambientais Marcadores genéticos são unidades herdáveis simples

    5. Polimorfismo de DNA resulta acúmulo de mutações pontual ou inserção/deleção macro-rearranjos: translocações, inversões, deleções

    7. Histórico de Marcadores 1. Karl Sax (1923): propôs método para localização de QTLs ligação entre genes de característica qualitativa (cor de semente) e quantitativa (peso de semente); Problema: ausência de mutações múltiplas em estoque de elite, baixa viabilidade 2. Hunter & Markert (1957) - marcas bioquímicas desenvolveram isoenzimas em gel de amido

    8. Histórico de Marcadores 3. Hubby & Lewotin (1966) demonstraram que 30% de loci de isoenzimas exibiam polimorfismo em populações selvagens de Drosophila; 4. 1970’s - ferramentas moleculares desenvolvimento de vetores de clonagem; enzimas de restrição; polimerases; ligases; Southern (1977);

    9. Histórico de Marcadores 5. RFLP proposto por Botstein et al. (1980) descrito para humanos 6. PCR proposto por Mullis & Faloona (1987) 7. VNTR por Jeffrey (1987) 8. RAPD por Rafalski et al. (1990)

    10. Histórico de Marcadores 9. SSR em plantas por Akkaya et al. (1992) 10. AFLP por Zabeau & Vos (1993) 11. CAPS por Konieczny & Ausubel (1993) 12. SCAR por Paran & Michelmore (1993) 13. Cho et al. (1999) - SNPs em Arabidopsis

    11. DESCRIÇÃO DOS MARCADORES MOLECULARES

    12. Marcadores Moleculares RFLP VNTR (minissatélite) RAPD, AP-PCR, DAF PCR-específico - SSR, ISSR, CAPS, SCARs AFLP SNPs

    13. Restriction Fragment Length Polymorphism - RFLP RFLP examina diferença em tamanho de fragmentos de restrição de DNA específicos Polimorfismo deriva de mutação pontual, inserção, deleção Utiliza-se DNA celular total Requer DNA puro de alto peso molecular

    14. Metodologia de RFLP 1 . Digerir DNA em fragmentos pequenos 2. Separação dos fragmentos por gel eletroforese 3. Transferência de fragmentos de DNA para filtro

    15. Metodologia de RFLP 4. Visualização dos fragmentos de DNA sondas marcadas (32P) ou a frio 5. Análise dos resultados bandas analisadas para alelos e/ou presença/ausência diferenças em padrão de bandas reflete diferenças genéticas A escolha de sonda/enzima de restrição é crucial

    16. Digestão de DNA Genômico e Separação em Gel

    17. Transferência para Membrana de Nylon ou Nitrocelulose

    18. Hibridização em Nylon ou Nitrocelulose

    19. Construção de biblioteca genômica ou de cDNA

    22. Interpretação de resultados

    26. Herança de RFLPs

    27. Análise de Diversidade e Filogenia por RFLP

    28. RFLP: sondas de locos único DNA Nuclear biblioteca genômica biblioteca de cDNA DNA Citoplasmático biblioteca de DNA cloroplástico e mitocondrial Sondas de RFLP são: locos-específica, co-dominante espécie-específica

    29. RFLP: sondas multi-locus Repetições em linha (tandem) - útil encontrada em vários loci altamente polimórficas Sequência de Minissatélite VNTR: variable number of tandem repeats uso em “DNA fingerprinting” uso de seqüências repetidas de fago M13

    30. Interpretação dos resultados

    31. Vantagens e Desvantagens de RFLP Reprodutível Marcadores co-dominantes Simples Trabalhoso Caro Uso de sondas radioativas*

    32. Random Amplification of Polymorphic DNA - RAPD Amplifica seqüências anônimas de DNA usando primers arbitrários 10 bases com >50% G+C PCR com um único primer Método rápido para detecção de polimorfismos Marcador dominante Problemas de reproducibilidade The random amplified polymorphic DNA (RAPD) technique is a PCR based method which uses one or sometimes two short arbitrary primers (usually 8-10 bases) to amplify anonymous stretches of DNA which are then separated and visualised by gel electrophoresis. The key point about this technique is that nothing is known about the identity of the amplification products. The amplification products are however extremely useful as markers in genetic diversity studies. Other important features of the technique are: The number of fragments. Many different fragments are normally amplified using each single primer, and the technique has therefore proved a fast method for detecting polymorphisms. The majority of commercially produced primers result in 6 to 12 fragments; some primers may fail to give any amplification fragments from some material. Simplicity of the technique. RAPD analysis does not involve hybridisation/autoradiography or high technical expertise. Only tiny quantities of target DNA are required. Arbitrary primers can be purchased. Unit costs per assay are low. This has made RAPD analysis very popular. RAPD markers are dominant. Amplification either occurs at a locus or it does not, leading to scores of band presence/absence; this means that homozygotes and heterozygotes cannot be distinguished. Problems of reproducibility - RAPD does suffer from a sensitivity to changes in PCR conditions resulting in changes to some of the amplified fragments. Reproducible results can be obtained if care is taken to standardise the conditions used (Munthali et al., 1992; Lowe et al., 1996). The random amplified polymorphic DNA (RAPD) technique is a PCR based method which uses one or sometimes two short arbitrary primers (usually 8-10 bases) to amplify anonymous stretches of DNA which are then separated and visualised by gel electrophoresis. The key point about this technique is that nothing is known about the identity of the amplification products. The amplification products are however extremely useful as markers in genetic diversity studies. Other important features of the technique are: The number of fragments. Many different fragments are normally amplified using each single primer, and the technique has therefore proved a fast method for detecting polymorphisms. The majority of commercially produced primers result in 6 to 12 fragments; some primers may fail to give any amplification fragments from some material. Simplicity of the technique. RAPD analysis does not involve hybridisation/autoradiography or high technical expertise. Only tiny quantities of target DNA are required. Arbitrary primers can be purchased. Unit costs per assay are low. This has made RAPD analysis very popular. RAPD markers are dominant. Amplification either occurs at a locus or it does not, leading to scores of band presence/absence; this means that homozygotes and heterozygotes cannot be distinguished. Problems of reproducibility - RAPD does suffer from a sensitivity to changes in PCR conditions resulting in changes to some of the amplified fragments. Reproducible results can be obtained if care is taken to standardise the conditions used (Munthali et al., 1992; Lowe et al., 1996).

    33. RAPD The random amplified polymorphic DNA (RAPD) technique is a PCR based method which uses one or sometimes two short arbitrary primers (usually 8-10 bases) to amplify anonymous stretches of DNA which are then separated and visualised by gel electrophoresis. The key point about this technique is that nothing is known about the identity of the amplification products. The amplification products are however extremely useful as markers in genetic diversity studies. Other important features of the technique are: The number of fragments. Many different fragments are normally amplified using each single primer, and the technique has therefore proved a fast method for detecting polymorphisms. The majority of commercially produced primers result in 6 to 12 fragments; some primers may fail to give any amplification fragments from some material. Simplicity of the technique. RAPD analysis does not involve hybridisation/autoradiography or high technical expertise. Only tiny quantities of target DNA are required. Arbitrary primers can be purchased. Unit costs per assay are low. This has made RAPD analysis very popular. RAPD markers are dominant. Amplification either occurs at a locus or it does not, leading to scores of band presence/absence; this means that homozygotes and heterozygotes cannot be distinguished. Problems of reproducibility - RAPD does suffer from a sensitivity to changes in PCR conditions resulting in changes to some of the amplified fragments. Reproducible results can be obtained if care is taken to standardise the conditions used (Munthali et al., 1992; Lowe et al., 1996). The random amplified polymorphic DNA (RAPD) technique is a PCR based method which uses one or sometimes two short arbitrary primers (usually 8-10 bases) to amplify anonymous stretches of DNA which are then separated and visualised by gel electrophoresis. The key point about this technique is that nothing is known about the identity of the amplification products. The amplification products are however extremely useful as markers in genetic diversity studies. Other important features of the technique are: The number of fragments. Many different fragments are normally amplified using each single primer, and the technique has therefore proved a fast method for detecting polymorphisms. The majority of commercially produced primers result in 6 to 12 fragments; some primers may fail to give any amplification fragments from some material. Simplicity of the technique. RAPD analysis does not involve hybridisation/autoradiography or high technical expertise. Only tiny quantities of target DNA are required. Arbitrary primers can be purchased. Unit costs per assay are low. This has made RAPD analysis very popular. RAPD markers are dominant. Amplification either occurs at a locus or it does not, leading to scores of band presence/absence; this means that homozygotes and heterozygotes cannot be distinguished. Problems of reproducibility - RAPD does suffer from a sensitivity to changes in PCR conditions resulting in changes to some of the amplified fragments. Reproducible results can be obtained if care is taken to standardise the conditions used (Munthali et al., 1992; Lowe et al., 1996).

    34. Interpretação de RAPDs Marcadores RAPD são anônimos Dados binários (presença x ausência) RAPD são dominantes (AA = Aa) Problemas de co-migração mesma banda, mesmo fragmento? uma banda, um fragmento? Questionamento para filogenia banda homólogas?

    35. PCR com primers arbitrários: acúmulo de siglas! RAPD Random Amplified Polymorphic DNA DAF DNA Amplification Fingerprinting AP-PCR Arbitrarily Primed Polymerase Chain Reaction MAAP Multiple Arbitrary Amplicon Profiling (sugerido por incluir todas as pequenas variações na técnica) All of the following techniques use one or two, short, GC-rich primers of arbitrary sequence. RAPD was the first to become available (Williams et al., 1990) and is by far the most commonly used of these techniques. DAF - DNA amplication fingerprinting Differences between DAF (Caetano-Anolles, et al., 1991a,b) and RAPD: higher primer concentrations in DAF shorter primers used in DAF (5-8 nucleotides) two-temperature cycle in DAF compared to 3-temperature cycle in RAPD DAF usually produces very complex banding patterns AP-PCR - arbitrarily primed polymerase chain reaction Differences between AP-PCR (Welsh and McClelland, 1990) and RAPD: in AP-PCR the amplification is in three parts each with its own stringency and concentrations of constituents high primer concentrations are used in the first PCR cycles primers of variable length, and often designed for other purposes are arbitrarily chosen for use (e.g. M13 universal sequencing primer) MAAP is only an acronym proposed by Caetano-Anolles et al. (1992) to encompass all of these closely related techniques, but which is not commonly used.All of the following techniques use one or two, short, GC-rich primers of arbitrary sequence. RAPD was the first to become available (Williams et al., 1990) and is by far the most commonly used of these techniques. DAF - DNA amplication fingerprinting Differences between DAF (Caetano-Anolles, et al., 1991a,b) and RAPD: higher primer concentrations in DAF shorter primers used in DAF (5-8 nucleotides) two-temperature cycle in DAF compared to 3-temperature cycle in RAPD DAF usually produces very complex banding patterns AP-PCR - arbitrarily primed polymerase chain reaction Differences between AP-PCR (Welsh and McClelland, 1990) and RAPD: in AP-PCR the amplification is in three parts each with its own stringency and concentrations of constituents high primer concentrations are used in the first PCR cycles primers of variable length, and often designed for other purposes are arbitrarily chosen for use (e.g. M13 universal sequencing primer) MAAP is only an acronym proposed by Caetano-Anolles et al. (1992) to encompass all of these closely related techniques, but which is not commonly used.

    36. Diferenças entre ensaios com primers arbitrários RAPD 10mers, gel de agarose corado com brometo DAF 5mers, gel de acrilamida e reação marcada 32P AP-PCR 10mers, gel de acrilamida e reação marcada 32P All of the following techniques use one or two, short, GC-rich primers of arbitrary sequence. RAPD was the first to become available (Williams et al., 1990) and is by far the most commonly used of these techniques. DAF - DNA amplication fingerprinting Differences between DAF (Caetano-Anolles, et al., 1991a,b) and RAPD: higher primer concentrations in DAF shorter primers used in DAF (5-8 nucleotides) two-temperature cycle in DAF compared to 3-temperature cycle in RAPD DAF usually produces very complex banding patterns AP-PCR - arbitrarily primed polymerase chain reaction Differences between AP-PCR (Welsh and McClelland, 1990) and RAPD: in AP-PCR the amplification is in three parts each with its own stringency and concentrations of constituents high primer concentrations are used in the first PCR cycles primers of variable length, and often designed for other purposes are arbitrarily chosen for use (e.g. M13 universal sequencing primer) MAAP is only an acronym proposed by Caetano-Anolles et al. (1992) to encompass all of these closely related techniques, but which is not commonly used.All of the following techniques use one or two, short, GC-rich primers of arbitrary sequence. RAPD was the first to become available (Williams et al., 1990) and is by far the most commonly used of these techniques. DAF - DNA amplication fingerprinting Differences between DAF (Caetano-Anolles, et al., 1991a,b) and RAPD: higher primer concentrations in DAF shorter primers used in DAF (5-8 nucleotides) two-temperature cycle in DAF compared to 3-temperature cycle in RAPD DAF usually produces very complex banding patterns AP-PCR - arbitrarily primed polymerase chain reaction Differences between AP-PCR (Welsh and McClelland, 1990) and RAPD: in AP-PCR the amplification is in three parts each with its own stringency and concentrations of constituents high primer concentrations are used in the first PCR cycles primers of variable length, and often designed for other purposes are arbitrarily chosen for use (e.g. M13 universal sequencing primer) MAAP is only an acronym proposed by Caetano-Anolles et al. (1992) to encompass all of these closely related techniques, but which is not commonly used.

    37. RAPD - resumo Rápido Simples Baixo custo Sem uso de radio-isótopos Marcador dominante Problemas de reproducibilidade Problemas de interpretação

    40. Sítio de Seqüência Dirigida (Sequence-tagged sites) Sequence-Tagged Microssatélites (STMS) ou SSR ou Microssatélites Microssatélites ancorados Inter-Simple Sequence Repeat (ISSR) Sequence-characterized amplified regions (SCARs) Cleaved amplified polymorphic sequence (CAPS) – PCR-RFLP More and more sequence information is becoming available from different sources and can be located in widely available databases. This information is extremely useful for developing new strategies for the analysis of genetic variation. A sequence-tagged site (STS) is the general term given to a marker which is defined by its primer sequences (Olsen et al., 1989). STSs have been used extensively for mapping of the human genome. Examples of STSs are given in the following slides, namely: Sequence-tagged microsatellites (STMS) also known as Simple Sequence Repeat Polymorphisms (SSRP) Anchored microsatellite oligonucleotides including inter-simple sequence repeat (ISSR) primers Sequence-characterised amplified regions (SCARs) Cleaved amplified polymorphic sequence (CAPS)More and more sequence information is becoming available from different sources and can be located in widely available databases. This information is extremely useful for developing new strategies for the analysis of genetic variation. A sequence-tagged site (STS) is the general term given to a marker which is defined by its primer sequences (Olsen et al., 1989). STSs have been used extensively for mapping of the human genome. Examples of STSs are given in the following slides, namely: Sequence-tagged microsatellites (STMS) also known as Simple Sequence Repeat Polymorphisms (SSRP) Anchored microsatellite oligonucleotides including inter-simple sequence repeat (ISSR) primers Sequence-characterised amplified regions (SCARs) Cleaved amplified polymorphic sequence (CAPS)

    41. Microssatélites (SSR) Sequence-Tagged Microsatélites (STMS) também conhecido como microssatélite ou Simple Sequence Repeat (SSR) Normalmente locus simples e multi-alélico Co-dominante Altamente reprodutível

    42. Microssatélites STMS ou SSRs Seqüências curtas (1 a 6 bases) repetidas em tandem Presentes em procariotos e eucariotos Presentes em regiões codificantes e não codificantes Maioria das repetições são dinucleotídeos (AC) n (AG) n (AT)n

    43. Polimorfismo devido a diferenças no número de repetições Escorregamento da DNA polimerase durante a replicação Crossing-over desigual entre cromátides irmãs Codominantes Normalmente locos simples e multi-alélico Microssatélites

    44. Microssatélites (SSR) altamente informativo - vários alelos por locos detecção por PCR facilmente transferível entre labs distribuição homogênea no genoma

    45. Microssatélites (SSR)

    46. Microssatélites (SSR) Obtenção de seqüências: a partir de banco de dados de genoma ou cDNA hibridação com biblioteca genômica, identificação de clones e seqüenciamento construção de biblioteca enriquecida por afinidade com seqüência da matriz

    47. Detecção do polimorfismo Géis de agarose Géis de acrilamida (detecta diferenças de até 2pb) coloração direta: nitrato de prata (barato) Coloração indireta: marcação radioativa ou fluorescente Microssatélites

    48. Problemas Custo e trabalho envolvidos no desenvolvimento dos primers Construção de bibliotecas genômica sequenciamento Triagem dos melhores primers ?Possibilidade de se usar seqüências depositadas em banco de dados EST – SSR funcional x SSR genômico Microssatélites

    49. Microssatélites (SSR)

    55. Microssatélites (SSR)

    56. Microssatélites (SSR)

    58. Microssatélites Bananeira 3x e 4x Cir 24.25

    59. Microssatélites

    60. Microssatélites Ancorados ISSR Amplificação de segmentos genômicos flanqueados por repetições Anelamento locos-específico Inter-simple sequence repeats (ISSR) ancorados na extremidade 3’ ou 5’ Marcadores dominantes Microssatélites mais úteis que minissatélites

    61. Microssatélites Ancorados ISSR

    62. ISSR UBC 811 UBC 816

    63. SCARs SCARs - sequence-characterised amplified regions proposto por Paran & Michelmore (1993) marcador locus-único derivado de fragmentos sequenciados de RAPD, ISSR, AFLP maior estabilidade - primers específicos analisado para presença/ausência possibilidade de simplificação de análise e automação

    64. SCARs

    66. CAPS ou PCR-RFLP CAPS - cleaved amplified polymorphic sequence marcador locus-específico produto amplificado por PCR e analisado por RFLP seqüência de banco de dados, clones de cDNA ou genômico codominante

    67. CAPS

    70. Amplified Fragment Length Polymorphism - AFLP Combinação de RFLP e PCR Resulta em padrões muito informativos Marcador dominante Método cada vez mais usado

    74. AFLP de cana com 33P

    75. AFLP de feijão gel desnaturante corado com prata

    77. COMPARAÇÃO ENTRE MARCADORES MOLECULARES

    78. Escolha de Marcadores Característica RFLP RAPD SSR AFLP ISSR CAPS Polimorfismo Pontual Pontual # Pontual Pontual Pontual InDel InDel Rep. InDel InDel InDel Nível de Polimorfismo médio médio alto médio médio baixo Abundância alta m.alta média m.alta média alta Dominância CoDom Dom CoDom Dom Dom CoDom [DNA] 10 mg 25 ng 50 ng 500 ng 25 ng 25 ng Seqüência não não sim não não sim Marcação sim/não não não sim/não não não Repetibilidade alta baixa alta média baixa alta

    79. CLASSIFICAÇÃO DE MARCADORES MOLECULARES

    80. Classificação por Tipo de Técnica Métodos sem uso de PCR RFLP VNTR Métodos com uso de PCR PCR com primers arbitrários RAPD, AP-PCR, DAF, MAAP; Polimorfismo de Tamanho de Fragmento Amplificado AFLP; ISSR PCR sítio-específico CAPS, SCAR SSRs (microssatélites) TGGE, SSCP, DGGE

    81. Classificação por Número de Cópias da Seqüência Alvo Seqüência de poucas cópias - codificante RFLP Seqüência com cópias repetidas VNTR SSRs (microssatélites) ISSR Seqüência com número de cópias indefinido RAPD, AP-PCR, DAF, MAAP; AFLP; CAPS, SCAR

More Related