490 likes | 1.2k Views
Análisis de Varianza. ANOVA (Analysis of Variation). ANOVA – Asunto básico. Dos Variables: Categórica (los grupos) Cuantitativa (lo medido) ¿Los promedios de la variable cuantitativa varían entre los grupos (categorías)?
E N D
Análisis de Varianza ANOVA (Analysis of Variation)
ANOVA – Asunto básico • Dos Variables: • Categórica (los grupos) • Cuantitativa (lo medido) • ¿Los promedios de la variable cuantitativa varían entre los grupos (categorías)? • Nota: si se trata solamente de dos grupos se hace test – t no pareado. Anova, para más de dos grupos.
ANOVA • Muestras provienen de población con distribución normal y con similares DS (para hablar de similitud de DS siga la regla 2:1). • La varianza de cada grupo es un estimativo de la varianza de la población. • La varianza mezclada (pooled) de los grupos puede utilizarse para calcular IC de la diferencia de pares de promedios.
Anova • Cuando tenemos más de dos grupos. • Hipótesis nula: • Calcular valor de F (de Fisher). • Distribución de F tiene sesgo cuando se acepta hipótesis nula.
En su forma más simple ANOVA: H0: Los promedios de todos los grupos son iguales. Ha: No todos los promedios son iguales No dice cómo o cuáles son diferentes. Puede continuar con “múltiples comparaciones” . Que hace el ANOVA?
Ejemplos de utilización de ANOVA en odontología • Cinco tratamientos diferentes para pacientes con herpes recurrente • Variación de ángulo goníaco en pctes con ADM clase I, II, III • Resistencia al desgaste de tres resinas diferentes • Grosor de la capa híbrida utilizando tres adhesivos diferentes
Test de ANOVA, se asume que: • Cada muestra debe ser independiente de las otras. • Cada muestra debe haber sido seleccionada al azar de la pob de donde proviene.
• Las pob de donde provienen las muestras debe tener dist normal. • Las varianzas de cada pob deben ser iguales, aunque los promedios sean diferentes, es decir cuando los tratamientos tengan efecto. Nota: si esto no se cumple, deberá ocupar otro test, generalmente test de Kruskal-Wallis.
Cómo seleccionar muestra al azar? • Asignando con la moneda (cara / sello) (fácil solamente para dos grupos). • Tablas de números aleatorios (ver libros de bioestadística) • Generar números aleatorios (función random o aleatorio.entre en excel), u otro software.
Anotación en ANOVA • N: número de individuos en total
ANOVA – ANALISIS DE VARIANZA DE UNA VIA Datos: 5 tratamientos con antivirales en 6 pctes (replicas) f = 6, k = 5, N = 30
5 trat para infección herpética (valores indican días de duración de las lesiones)
5 trat para infección herpética (valores indican días de duración de las lesiones)
5 trat para infección herpética (valores indican días de duración de las lesiones)
Suma total de cuadrados Suma total de los cuadrados (SSC): Factor de corrección (CF): (åx)2/n TSS = (351+158+118+171+249) – (45+3026+31+37)2 /30 = 1047 – 28561/30 = 1047 – 952,03 Factor de corrección TSS = 94,97
Suma total de los cuadrados • Está basada en la suma de los cuadrados de las diferencias de cada una de las observaciones del promedio general. Se divide en: • Suma de Cuadrados Entre los grupos basado en la suma de los cuadrados de la diferencia entre el promedio de cada grupo y el promedio general (SSB) • Suma de Cuadrados Dentro de los grupos: calculado como la suma de los cuadrados para la diferencia entre cada observación y el promedio de su grupo (SSw)
SSB • Variabilidad entre los grupos: Variabilidad de los promedios de los diferentes grupos alrededor del gran promedio (calculado sin tomar en cuenta la estructura del grupo)
SSw • Variabilidad dentro del grupo: También llamada variación NO explicada o residual y se refiere a la variación al azar entre los individuos dentro de cada grupo.
Cuadrados dentro de los grupos(Error) Suma de cuadrados dentro de los grupos (Within Sum of Squareds) (Donde k: número de grupos; f: número de individuos en cada grupo) SSW = 1047 – ( 452/6 +302/6 +262/6 +312/6 + 372/6 ) = 1047 – 988,51 SSW = 58,49
SUMA DE CUADRADOS ENTRE LOS GRUPOSBetween sum of squares Suma de cuadrados entre los grupos (between) SSB = ( 452/6 +302/6 +262/6 +312/6 + 372/6 ) – 952,03 SSB = 988,51 – 952,03 SSB = 36,48
Cuadrados medios • Cada suma de cuadrados se convierte en una varianza estimada (Cuadrados Medios) dividiendo por sus grados de libertad. • GL entre los grupos: k – 1 • Dentro de los grupos: (n1 – 1 + n2 – 1 + n3 – 1)
De la hipótesis nula: • Todos los grupos tienen el mismo promedio y la misma varianza, por lo tanto la relación de las varianzas sería 1. • Mediante el valor de F comparamos las varianzas y obtenemos la relación de ellas GAUSS
Tabla de ANOVA Construcción de la tabla de Análisis de Varianza: Fuente de SC gl MS F Variación Between 36,48 4 9,12 3,897 Within 58,49 25 2,339 Total 94,97 29 = 2,75 Por lo tanto existen dif. signif. (P<0,05)
Fcríticodepende de los gl de CMentre y CM dentro, y elegir el valor de
Por lo tanto P<0,05 P>0,01 0,05>P>0,01
Valores de F críticos según tablaValor de F obtenido = 3,897 = 2,75 = 3,35 = 4,18 Por lo tanto: 0,05> P > 0,01
GRADOS DE LIBERTAD EN TABLA DE ANOVA Entre los grupos (between) (k-1): n(úmero de grupos) – 1: (5 - 1) = 4 Dentro de los grupos (within) k(n-1): 5(6-1) = 25 Total = n – 1; 30 - 1 = 29
VALOR DE F Si F es un número grande, la variabilidad entre las medias de las muestras es mayor que la esperada a la variabilidad dentro de las muestras, y rechaza la hipótesis nula de que todas las muestras son de la misma población.
Gráficos para ANOVA • Promedios y DS de cada grupo. • Cajas. • Puntos.
Tests para comparar medias • Scheffé • Si tamaño de los grupos es diferente • Interesa además contrastes (Ej: grupo 1 y 2 vs 3) • Tukey • Si tamaño de los grupos es igual • Interés prinicipal es comparar solo promedios de grupos • Bonferroni • No se había previsto comparar grupos Utilizar solamente si resultado en ANOVA es p<0,05
Test de Scheffé • Dos promedios presentan diferencias significativas si su diferencia excede el valor calculado por: k = número de promedios. F3,8;0.05 = 4,0662 MSE = 0,917 (de cuadrado medio, within)
Test de Scheffé • Dos promedios presentan diferencias significativas si su diferencia excede el valor calculado por: [(k-1)F0,05]1/2 [(1/n1 + 1/n2)*MSE]1/2 k = número de promedios. F3,8;0,05 = 4,0662 MSE = 0,917 (de cuadrado medio, within)
Cálculo de Scheffé Existe diferencia entre dos grupos, si la diferencia de sus promedios supera a 2,928
5 trat para infección herpética (valores indican días de duración de las lesiones), última fila sus promedios
Promedios de cada grupo y sus diferencias • Entre Placebo y grupo (3) = 7,50 – 4,33 = 3,17 Valor supera al valor del test de Scheffé (2,928), por lo tanto existen diferencias significativas entre esos dos grupos 2. Entre placebo y grupo (2) = 7,50 – 5,0 = 2,50 Valor del test de Scheffé es superior, por lo tanto NO existen diferencias significatvas entre Placebo y grupo 2. NO DEBE HACER MÁS COMPARACIONES…YA QUE TODAS LAS OTRAS DIFERENCIAS SON MENORES A VALOR DE SCHEFFÉ. Promedios ordenados de mayor a menor (línea marca entre qué grupos NO existe diferencias significativas):
Realización de Anova con software estadístico • Dependiente: variable que desea examinar, debe ser continua (por ejemplo: edad, recuento de linfocitos, hematócrito, etc. D N !) • Factor: una o más variables categóricas que tienen agrupados datos en más de dos grupos (variables de agrupar, ej.: NSE, Clase esq (I, II y III), etc.) • Identificar si desea comparación entre grupos(Tukey, Scheffé, etc.)
Tukey o Scheffé • Tukey. Uses the Studentized range statistic to make all pairwise comparisons. This is the default. • Scheffé. The significance level of Scheffé’s test is designed to allow all possible linear combinations of group means to be tested, not just pairwise comparisons available in this feature. The result is that Scheffé’s test is more conservative than other tests.
Tipos de Anova • Con un factor • Con dos factores: • tres grupos (A, B, C) • género (M, F) • Interacción • Con más de dos factores (NSE, género, religión) • De medidas repetidas (activ EMG)
Anova de dos vías Categorical values encountered during processing are: GRUPO$ (3 levels) A, B, C METODO$ (2 levels) I, II Dep Var: LIPIDOS N: 18 Multiple R: 0.998 Squared multiple R: 0.996 Analysis of Variance Source Sum-of-Squares df Mean-Square F-ratio P GRUPO$ 109.644 2 54.822 1372.854 0.000 METODO$ 0.027 1 0.027 0.670 0.429 GRUPO$*METODO$ 0.047 2 0.024 0.591 0.569 Error 0.479 12 0.040 -------------------------------------------------------------------------------
Desventajas de utilizar computador en estadística (Altman, 1999) • Errores en los softwares • Versatilidad (dada la disponibilidad de tantos softwares y tests: tentación a usar el q no corresponde) • La caja negra le aleja de sus datos • La basura se va con la basura (si ingresa datos en forma equivocada los resultados serán equivocados, ingreso de 0, 9, 99, 999)
Ventajas de utilizar computador en estadística(Altman, 1999) • Precisión y rapidez • Versatilidad (gran cantidad de tests disponibles) • Gráficos • Flexibilidad • Nuevas variables • Volumen de datos • Transferencia de datos
Estrategia para análisis de datos • Recolección de datos (form codificados) • Entrada de datos (Excel) • Chequear datos (min, max, x, ds) • Graficar antes de analizar • Análisis de datos • Chequear resultados • Interpretar
Web Pages that Perform Statistical Calculations: • http://members.aol.com/johnp71/javasta2.html#Demos