320 likes | 836 Views
Tema 6 Carriles y Ruedas. La práctica totalidad de los aparatos de elevación utilizan como medio de rodadura ruedas de acero sobre carril metálico. Únicamente los vehículos grúa y pórticos autoportantes especiales incorporan neumáticos, o plataformas con ruedas de bandaje.
E N D
La práctica totalidad de los aparatos de elevación utilizan como medio de rodadura ruedas de acero sobre carril metálico. Únicamente los vehículos grúa y pórticos autoportantes especiales incorporan neumáticos, o plataformas con ruedas de bandaje. • Características comunes: • Permiten una fácil rodadura del elemento rodante. • Conforman un perfil equilibrado • Presentan un valor adecuado de inercia. Tipos de carriles Llantón Son carriles ordinarios. Se emplean frecuentemente sobre los caminos de rodadura implementados sobre perfiles laminados o vigas cajón (rodadura de carros de puentes grúa, grúas pórtico o grúas consola). Se suministran con las esquinas superiores redondeadas o achaflanadas, con superficie bombeada.
Burbach Son carriles de uso frecuente tanto en carriles elevados como sobre fundación de hormigón. Presentan una cabeza ancha para soportar las grandes cargas y un patín muy ancho que facilita su fijación.
Vignole Existe una tendencia a utilizar este tipo de carril frente al tipo Burbach debido a su mayor relación inercia/peso. Actualmente se utiliza únicamente en rodadura de ferrocarriles. Su empleo es más frecuente en Estados Unidos. Plano Empleado para elementos de rodadura sin pestaña.
Se trata de perfiles diseñados para un uso específico, que es permitir el desplazamiento de grúas, desde las más pequeñas hasta las más grandes que se pueden ver en los macropuertos y terminales de carga. Los requerimientos de velocidad son bajos, pero las exigencias de carga a soportar son muy altas. Los estándares más habituales en Europa para estos raíles son la norma DIN 536 y MRS. Accesorios de fijación o sujeción adecuados para cada tipo de raíl, en particular: - Bridas de unión. - Placas de asiento y de anclaje. - Grapas o clips de sujeción, de todos los tipos existentes. - Traviesas o durmientes, metálicas o de madera. - Tirafondos y clavos de vía - Tornillos, tuercas, arandelas de todo tipo
Carriles - Cálculo Cálculo de carriles sobre cimentación de hormigón Cuando el carril se apoya en toda su longitud sobre hormigón es necesario comprobar la presión específica y la solicitación del carril a flexión, teniendo en cuenta la deformación elástica del hormigón. Fórmulas aproximadas para el cálculo: Presión específica bajo el patín (MPa) Solicitación del carril (MPa) Se admite p= 2 MPa para un hormigón de buena calidad y Smáx= 250 MPa. P- reacción de cada rueda, N. b- anchura del rail, m. W-módulo resistente del carril, m3. I- momento de inercia del carril, m4. Em- módulo de elasticidad del hormigón = 14,5 GPa. E- módulo de elasticidad del acero = 210 GPa.
Ruedas • Las ruedas metálicas son el elemento de apoyo que facilitan el desplazamiento en los aparatos de elevación. • Las ruedas unidas directamente al elemento motriz son denominadas tractoras, el resto son libres. • Los perfiles de rodadura pueden constar de uno o dos salientes laterales o pestañas, con objeto de direcionar el movimiento de la rueda a lo largo de los raíles. Las ruedas sin pestañas pueden utilizarse solamente en presencia de rodillos guía complementarios con el eje vertical de rotación. • La superficie de rodadura puede ser cilíndrica o cónica. La conicidad habitualmente alcanza el valor 1:20 (1:16 en ruedas americanas) con los vértices del cono hacia el exterior. Tipos de perfiles de rodadura Llanta cilíndrica: grúas con accionamiento independiente, grúas que tiene un número de ruedas mayor que cuatro y ruedas libres Llanta cónica: grúas con mecanismo de avance con accionamiento central y con dos ruedas impulsoras. Las llantas suelen ser de 30 a 40 mm más anchas que el carril, tal que exista el juego necesario para el guiado. • Pestaña única, se utiliza: • Cuando la distancia entre carriles no sobrepasa los cuatro metros y ambos caminos se encuentran en la misma cota vertical. La disposición de las pestañas de las ruedas en un rail es opuesta a la disposición de las pestañas de las ruedas del otro rail. • En los carros de apoyo y suspendidos de los puentes grúa. • En los carros suspendidos que se desplazan por un monorail.
Ruedas P, reacción en kg. h, espesor del ala en cm. Flexión del ala perpendicular al alma Flexión en una sección normal a la viga Flexión del ala perpendicular al alma Valor admisible según DIN120
Ruedas • En ciertos aparatos, sobre todo en puentes grúa se constata un elevado desgaste de las pestaña. En los puentes grúa, la relación de la carga a la distancia entre ejes es muy desfavorable, y se originan avances diferentes en ambos carriles. factores que provocan la marcha inclinada: • Las diferencias en los diámetros de las ruedas motoras. • Mal alineamiento de los ejes de las ruedas. • Vía de rodadura mal montada. El efecto que produce es frotamiento elevado sobre la pestaña, con el consecuente desgaste. En todos esto casos una ligera conicidad de la llanta se ha revelado como remedio eficaz. El adelantamiento de un lado de la grúa respecto al otro genera la rodadura de la rueda retrasada por su mayor diámetro, alineándose automáticamente el tren sin la participación de las pestañas
Ruedas La utilización de rueda sin pestaña con rodillos guía disminuye esencialmente las pérdidas por rozamiento por el carril, ya que el rozamiento de deslizamiento de las pestañas se sustituye por el de rodadura del rodillo. Como consecuencia, disminuye la potencia de los motores de translación y aumenta considerablemente la vida de la rueda. Número de ruedas impulsoras: es función de la capacidad de carga y del tramo de la guía. Grúas de Baja capacidad de carga cuatro ruedas impulsoras Grúas de alta capacidad de carga mayor número de ruedas impulsoras. Estas se colocan dos a dos en balancines.
Ruedas Cálculo de las ruedas propulsoras: TEORIA DE HERZT. Distribución Presiones semieliptica
Ruedas Simplificación: mismo coef. poisson Acero vs Acero Valores admisibles para el coeficiente K en kg/cm2
Ruedas Cálculo de las ruedas de un aparato de elevación: NORMA DIN 15070 • c1 - coeficiente del material • c2 - coeficiente del numero de revoluciones • c3 - coeficiente de vida de la rueda • d1 - diametro de la rueda • k - anchura de la cabeza del carril • n - n° de revoluciones de la rueda • P - compresión • Padm - compresión admisible entre rueda y carril • rl - radio de redondeado de la cabeza del carril • r2 - radio del arco de la cabeza del carril • k-r1 - anchura util de la cabeza del carril • v - velocidad de marcha • R - carga de la rueda • Rmáx - carga maxima de la rueda • Rmin - carga minima de la rueda • Ro - carga característica de la rueda La carga característica de la rueda Ro resulta de la primera ecuación con: Padm=5,6 N/mm2 (c1=1) c2=c3=1 Ro=5,6d1(k-2r1)
Ruedas • Las pestañas deben ser ampliamente dimensionadas, son solicitadas por las fueras de guiado frecuentemente muy importantes y están expuestas a un gran desgaste. Chapas de retención DIN15058. • Esto es igualmente válido para la llanta de la rueda, solicitada localmente por las grandes reacciones normalmente admitidas en los aparatos de elevación y por el desgaste acelerado del servicio duro. • En el caso de rueda libre sobre eje fijo, la unión entre rueda y eje se lleva a cabo mediante casquillos de bronce y rodamientos. • En las ruedas motoras es útil transmitir el esfuerzo tangencial mediante casquillos y rodamientos que absorben los esfuerzos de cortadura. • La facilidad de montaje y desmontaje es un factor influyente en el diseño de la instalación, el cambio de ruedas y rodamientos es una operación relativamente frecuente. Montaje sobre casquillo de bronce Rueda normalizada DIN15046 Fijación de corona mediante casquillos de cortadura
Ruedas con cojinetes de bronce lisos RuedasSegún Norma DIN15049 Ruedas con rodamientos
Ruedas Cálculo de la resistencia a la rodadura (ruedas de un aparato de elevación): Básicamente comprende la resistencia a la rodadura + rozamientos del eje, a estas se le añaden los rozamientos de las pestañas y de los cubos. Además los carriles nunca están rigurosamente planos y el montaje de estos como el de las ruedas no es exacto, así como sus diámetros. Se debería evaluar aparte la resistencia debida a inclinaciones, trazado y efecto del viento. Basada en resultados experimentales en condiciones de servicio medias(Reacc=5 kg/Tn), da la resistencia a la rodadura w (en kg por tonelada de reacción) debida a los dos fenómenos expuestos, así como la resistencia total wtot(5 kg/Tn) teniendo en cuenta las resistencias suplementarias.
Ejercicio 1 Problema. Una grúa pórtico tiene 2 vigas principales. Altura = 5 m. Luz = 10 m. Qutil = 35000 kg. Gancho doble de 150 kg. Velocidad traslación carro = 80 m/min. Velocidad de traslación grúa = 10 m/min. Resistencia a la tracción mínima del material de la ruedas = 740 N/mm2. Trabaja el 50% del tiempo. Perfil Burbach A 65 para la rodadura del pórtico y llanton 50.40 para la rodadura del carro. El tambor de doble ramal esta centrado en el carro. Calcular ruedas de traslación a) de carro y b) de pórtico. (Se hacen las siguientes estimaciones para los pesos: Pcarro= 2500kg, Pestructura= 32000kg).
Ejercicio 2 • Problema. Dimensionar el puente grúa de la figura. Debe elevar una carga util de 20000 kg. El cable tiene una resistencia de 180 kg/mm2. El aparato posee una frecuencia aproximada igual de cargas pequeñas, medianas y máximas, y se le estima una duración del mecanismos de 12500 horas. • DATOS: • Qcarro = 1300kg; Qgrúa = 4000kg • - mecanismo de elevación: • montaje: 4 ramales • Stambor = 160MPa • velocidad de elevaci6n: vL = 12m/min , • Rendimiento transmisión = 85% • - rodadura del carro y del puente: • velocidad de traslación: vtrasnlación = 40 m/min • Padm.= 7.0 N/mm2 • funcionamiento del mecanismo de rodadura: 30% por hora • perfil Burbach