1 / 31

Anna Sepioło gr. B III OAM

Ocena wartości diagnostycznej testu – obliczanie czułości, swoistości, wartości predykcyjnych testu. Krzywe ROC. Anna Sepioło gr. B III OAM. Opracowanie zakresu wartości referencyjnych. Dobranie grupy kontrolnej reprezentatywnej dla danej populacji

ivrit
Download Presentation

Anna Sepioło gr. B III OAM

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ocena wartości diagnostycznej testu – obliczanie czułości, swoistości, wartości predykcyjnych testu. Krzywe ROC. Anna Sepioło gr. B III OAM

  2. Opracowanie zakresu wartości referencyjnych • Dobranie grupy kontrolnej reprezentatywnej dla danej populacji • Badanie próbek referencyjnych – otrzymujemy wartości referencyjne • Opracowanie statystyczne wyników • Obliczanie górnej i dolnej wartości referencyjnej – wyznaczenie przedziału referencyjnego zawierającego zwykle 95% wartości referencyjnych

  3. Chorzy Zdrowi Zbiór wartości prawidłowych cechuje rozproszenie (dyspersja). Ponieważ przy przejściu od stanu zdrowia do stanu choroby najczęściej obserwuje się stopniowe zmiany wartości prawidłowych do nieprawidłowych rozgraniczenie wartości mierzonych na właściwe dla grupy chorych i grupy zdrowych musi mieć charakter umowny.

  4. Wartość graniczna (wartość odcięcia) – kryterium rozdzielające wyniki prawidłowe od wyników uznanych za nieprawidłowe • Zawsze pewna ilość osób zdrowych będzie mieć wartości mierzonego parametru poza wartością graniczną • W grupie osób chorych pewna ilość badanych będzie mieć wartości mierzone poniżej wartości granicznej, a więc mieszczące się w zakresie referencyjnym

  5. TP=PD – wyniki prawdziwie dodadnie TN=PU – wyniki prawdziwie ujemne FP=FD – wyniki fałszywie dodatnie FN=FU – wyniki fałszywie ujemne Chorzy Zdrowi

  6. Podstawowe parametry testu diagnostycznego • Czułość • Specyficzność • Wartości predykcyjne

  7. czułość Czułość diagnostyczna • Stosunek wyników prawdziwie dodatnich do sumy prawdziwie dodatnich i fałszywie ujemnych • Określa zdolność testu do wykrywania osób chorych • Odnosi się tylko do populacji osób chorych

  8. swoistość Swoistość diagnostyczna • Stosunek wyników prawdziwie ujemnych do sumy prawdziwie ujemnych i fałszywie dodatnich • Określa zdolność testu do wykrywania osób zdrowych (poprawnego wykluczenia choroby) • Odnosi się tylko do populacji osób zdrowych

  9. wartość predykcyjna dodatnia Wartość predykcyjna dodatnia PPV • Stosunek wyników prawdziwie dodatnich do sumy wyników prawdziwie dodatnich i fałszywie dodatnich (wszystkich wyników dodatnich) • Proporcja osób rzeczywiście chorych wśród osób z dodatnim wynikiem testu

  10. Wartość predykcyjna dodatnia PPV • Prawdopodobieństwo, że osobnik miał chorobę mając pozytywny wynik testu • Jeśli więc badana osoba otrzymała pozytywny wynik testu, to PPV daje jej informację na ile może być pewna, że cierpi na daną chorobę

  11. wartość predykcyjna ujemna Wartość predykcyjna ujemna NPV • Stosunek wyników prawdziwie ujemnych do sumy wyników prawdziwie ujemnych i fałszywie ujemnych (wszystkich wyników ujemnych) • Proporcja osób zdrowych wśród osób z ujemnym wynikiem testu

  12. Wartość predykcyjna ujemna NPV • Prawdopodobieństwo, że osobnik nie miał choroby mając negatywny wynik testu • Jeśli więc badana osoba otrzymała negatywny wynik testu, to NPV daje jej informację na ile może być pewna, że nie cierpi na daną chorobę

  13. wiarygodność Wiarygodność testu • Stopień, w jakim wyniki badania odzwierciedlają rzeczywistość • Odsetek pacjentów prawidłowo zakwalifikowanych jako zdrowi lub jako chorzy

  14. Kryteria ustalania wartości decyzyjnej • Cel badania (przesiewowe, potwierdzające) • „strata społeczna” • Częstość choroby w populacji

  15. Przesunięcie punktu odcięcia w lewo ↑ czułość ↓ swoistość Kiedy zależy nam na wykryciu wszystkich osób chorych, np. badania przesiewowe (np. wykrywanie fenyloketonurii). Chorzy Zdrowi

  16. Przesunięcie punktu odcięcia w prawo ↓ czułość ↑ swoistość Kiedy zależy nam na wykluczeniu wszystkich osób zdrowych, np. jeśli trzeba zdecydować o bardzo inwazyjnym leczeniu. Zdrowi Chorzy

  17. Krzywe ROC • Potrzebny jest „złoty środek” aby dobrze zaklasyfikować chorych i zdrowych • Powinna być zbliżona liczba chorych i zdrowych • Zdrowi i chorzy powinni reprezentować populację, dla której wykonuje się oznaczenia

  18. Krzywe ROC • ang. Receiver Operating Characteristic – krzywa charakterystyki operatora odbiornika • Zależność pomiędzy czułością a (1-swoistością) • Cel: ustalenie wartości decyzyjnej określonej przez konkretny punkt decyzyjny lub powierzchnię pod krzywą

  19. Dla każdego z możliwych punktów odcięcia obliczamy czułość i specyficzność, a następnie zaznaczamy otrzymane wyniki na wykresie. Zaznaczamy je w układzie współrzędnych, gdzie na osi odciętych jest (1-swoistość), a na osi rzędnych czułość.

  20. Zdrowi Chorzy

  21. Optymalnym punktem odcięcia jest punkt krzywej ROC znajdujący się najbliżej punktu o współrzędnych (0,1). Punkt o współrzędnych (0,1) to punkt o czułości równej 1 i swoistości równej 1.

  22. Zdrowi Chorzy Idealny kształt krzywej ROC

  23. Zdrowi Chorzy Najgorszy kształt krzywej ROC

  24. AUC Pole pod krzywą (AUC) Bardzo popularnym podejściem jest wyliczanie pola pod wykresem krzywej ROC, oznaczanego jako AUC (area under curve). Jest to wskaźnik mocy diagnostycznej testu. Wartość wskaźnika AUC przyjmuje wartości z przedziału [0,1]; im większa, tym lepszy model. Większość testów używanych w diagnostyce reprezentuje moc diagnostyczną wyrażającą się wielkościami AUC pomiędzy 0,8 i 0,95.

  25. Wartość predykcyjna jest intuicyjnym wskaźnikiem wykonania testu, ale zależy od częstości występowania choroby. • Częstość występowania choroby w populacji stosuje się, aby uzmysłowić, że test nie będzie taki sam po zastosowaniu w rzeczywistej sytuacji klinicznej.

  26. Wpływ częstości choroby na wartość diagnostyczną testu • Prevalence (częstość) – proporcja ludzi z chorobą w danej populacji w szczególnym momencie czasu. • Incidence (nowe przypadki) – liczba nowych przypadków choroby pojawiających się w danym okresie czasu (n/1000/rok).

  27. Odds ratio (iloraz prawdopodobieństwa) – prawdopodobieństwo obecności danej choroby podzielone przez prawdopodobieństwo jej nieobecności. • Likehood ratio (iloraz wiarygodności) – prawdopodobieństwo pojawienia się danego wyniku (gdy choroba jest obecna) podzielone przez prawdopodobieństwo tego samego wyniku gdy nie ma choroby.

  28. Dziękuję za uwagę 

More Related