200 likes | 342 Views
Double Beta Decay Spectroscopy and Neutrino mass sensitivities Hiro Ejiri*, T. Shima RCNP Osaka Univ. * NIRS & CTU, Praha For the MOON collaboration Sendai TAUP Sep. 07. H. Ejiri, J. Phys. Soc. Japan, Invited Review, 74 (2005) 2101.
E N D
Double Beta Decay Spectroscopy and Neutrino mass sensitivities Hiro Ejiri*, T. Shima RCNP Osaka Univ. *NIRS & CTU, Praha For the MOON collaboration Sendai TAUP Sep. 07
H. Ejiri, J. Phys. Soc. Japan, Invited Review, 74 (2005) 2101. H. Ejiri, Mod. Phys. Lett. A, Vol. 22, No. 18 (2007) pp. 1277-1291. 1.Doublr beta decay spectroscopy 2. Majorana mass sensitvity 3.Double beta decays to excited states 4.Nuclear matrix element
0nbb by RHC, Heavy n, SUSY, and others A0n = LHC + RHC <m> +SUSY <l>~k(ML/MR)2 LHC / RHC Q21 and E12 correlations LHC mn / SUSY mn M0n + kMS different isotopes and states with different M A2n=GM2n AM =<gM> M Energy spectra 4,3,2 body
Spectroscopic detectors • ELEGANT- MOON, • DCBA • NEMOIII - Super NEMO • 1. E12-Q12 identify mn term • 2. Detector ≠ source • Select bb nuclide by • Qbb, Z, Enrichment, 2nbb • 3. Small RI-BG :E(RI) < Qbb • b/a,g separation • Major BG : 2nbb tail in onbb window. E-resolution !
Interference A0n = XL + XRXL = Light n + SUSY (+Heavy n) = mn M0n + kMS = mn M0n[(1 + (k/ mn) (Ms/M0n) ]Cancellation at A=76 (left fig.) or 136(right), but not at other A’ because of the different short-range/long range matrix elements. Need measurements with different bb nuclides. . Vergados 07
Nuclear matrix elementsQRPA M0n ~ 24 /r = 18/A1/3 within a factor 1.3
Mass sensitivities and nuclear sensitivity <mn> = SN-1/2 (Neff)-1/2d1/2 • SN-1/2=13 (GM2/0.01 A)-1/2 • Nuclear sensitivity : mn • N=1 t y and Y0n =d = 1 • SN-1/2 =20~10 meV for M=25/R • Neff = e0n N ton year • = No signals for 90 % CL ~2.3 if B~0 ~1.6 + 1.7 (BN)1/2 • BG =B/t y N ton year B=[B(RI) + B(2n)] B(2n)=4.2(e2n/t2n1/2)(100/A), e2n 10-7 and t2n1/2 1020 M; excited stateand NdM=M/3
Mass sensitivities and nuclear sensitivity <mn> meV= (SN)-1/2 (e0n N)-1/2d1/2 • SN = G0nM2 /0.01A/170) • M=25/R ~ 4 • Small BG or N • ~ 2.3 • <mn> = 2.3SN -1/2 (e0n N)-1/2 • Large BG or N • ~ 1.7 (BN)1/2 • <mn> = 1.3SN -1/2 (e0n)-1/2 • N-1/4 B1/4 N-1/2 N-1/4
Excited 0+ states bb-g-g reduce BG’s 2nbb, RI. • Cancellation, but not at both. • GRS and EXS T0n = G |Mnmn +Ms l |2 Mn = M(1+) + M(J>1+) Nd M/3 is assumed for deformation change.
Excited state for e0n, e2n = 2/3 of GR by g , and M= same as GR
150Nd -- 150Sm deformation 150Nd E(2) 0.13 MeV Q MeV G0n 150Sm GS 0+ E(2) 0.334 MeV 3.3613.4 0.74 MeV E(2) 0.34 MeV 2.63 3 E0 1.255 MeV E(2) 0.16 MeV 2.11 1.3 E2 Simucovic 1/4 ~ 1/6 of M due to deformation change. M0n due to change of deformation is 1/3? M0n to the excited, but same deformation is 1 RCNP/MSU 3He,t t, 3He Zergers R
Charge exchange reactions RCNP Osaka High DE t- s response at low and high 1+ 2- statesD. Freckers, R. Zegers, MSU/RCNP/KVI 1+ Suhonen 2- H. Ejiri, PR 380 ‘2000
Photon probes T,Tz=5,4 Polarized GeV-MeV photons from laser scattered off GeV electronsfor electric and magneic trasitions. T_=IAS g T,Tz=5,5 T,Tz=6,6 T,Tz=5,5 b H. Ejiri PRL 21 ’68, H. Ejiri PR 38 ‘78 T,Tz=6,6 bb T,Tz=4,4
MOON detector conceptional sketch Multi-layers, 2 for bb and all others active shields Each with 1PL+2PS 1.3 m-1.3 m- 4 cm 25 kg One unit 100 mod., bb:30 kg, 1 m2–4m, H. Ejiri, et al., PRL, 85, 2000, 2917. H. Ejiri et al., Czech. J. Phsy. 54, 2004, 317. Based on ELEGANT V
Concluding remarks 1. DBD studies of E-Q correlations for 2-3 isotopes and/or states are indispensable for identifying the 0nbbn-mass processes. 2. They can be realistic by spectroscopic DBD studies with detector≠bb souces. 82Se , 100Mo 150Nd are good bb candidates. 3. Recent QRPA/RQRPA give M0n~18/A1/3. Nuclear sensitivity, the mass for N=1 t y Y0n=1, is 20 meV for 76Ge and 10 meV for 82Se, 100Mo, 130Te, 136Xe. 5. Then QD ~100 meV and IH~30 meV masses are studied by N~0.1 and 1 t y with 76Ge and 82Se, 100Mo, 130Te, 136Xe . 6. Spectroscopic experiments (MOON, SuperNEMO) can access the IH masses with realistic s ~ 2.2 % and ~20 mBq/t . 7. Charge exchange nuclear reactions and photo nuclear reactions are used to check the M0n calculations. H. Ejiri, J. Phys. Soc. Japan, Invited Review, 74 (2005) 2101. H. Ejiri, Mod. Phys. Lett. A, Vol. 22, No. 18 (2007) pp. 1277-1291.
MOON collaboration H.Ejiri*, T.Itahashi, K.Matsuoka, M.Nomachi, T. Shima, • S. Umehara, RCNP and Physics OULNS, Osaka Univ. • P.J.Doe, R.G.H.Robertson*, D.E.Vilches, J.F.Wilkerson、D. I. Will. CENPA, Univ. Washington. • S.R.Elliott, V. Gehman, LANL • J.Engel. Phys.Astronomy, Univ. North Carolina. • M.Finger, M. Finger, K. Kuroda, M. Slunecka , V. Vrba. • Phys. Charles Univ. and CTUPrague • K.Fushimi, H. Kawauso, K. Yasuda, GAS, Tokushima Univ.Tokushima • M. Greenfield, ICU, Tokyo. • R. Hazama, Hiroshima Univ. • H. Nakamura, NIRS. • A. Para FNAL • A. Sissakian, V. Kekelidze, V. Voronon, G. Shirkov A. Titov, JINR • V. Vatulin, P.Kavitov, VNIIEF • S. Yoshida, Tohoku Univ. Sendai • * Contact persons.
Neutrino Weak probes C.Volpe p + Hg n p+, p+ m+ +nm m+ e+ + ne + anti-nm SNS 1 6 1015 7 1014 J-PARC 3 1.2 1015 3 1014 • . 3 GeV-p pn