1 / 20

Double Beta Decay Spectroscopy and Neutrino mass sensitivities Hiro Ejiri*, T. Shima

Double Beta Decay Spectroscopy and Neutrino mass sensitivities Hiro Ejiri*, T. Shima RCNP Osaka Univ.  * NIRS & CTU, Praha For the MOON collaboration Sendai TAUP Sep. 07. H. Ejiri, J. Phys. Soc. Japan, Invited Review, 74 (2005) 2101.

jatin
Download Presentation

Double Beta Decay Spectroscopy and Neutrino mass sensitivities Hiro Ejiri*, T. Shima

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Double Beta Decay Spectroscopy and Neutrino mass sensitivities Hiro Ejiri*, T. Shima RCNP Osaka Univ. *NIRS & CTU, Praha For the MOON collaboration Sendai TAUP Sep. 07

  2. H. Ejiri, J. Phys. Soc. Japan, Invited Review, 74 (2005) 2101. H. Ejiri, Mod. Phys. Lett. A, Vol. 22, No. 18 (2007) pp. 1277-1291. 1.Doublr beta decay spectroscopy 2. Majorana mass sensitvity 3.Double beta decays to excited states 4.Nuclear matrix element

  3. 0nbb by RHC, Heavy n, SUSY, and others A0n = LHC + RHC <m> +SUSY <l>~k(ML/MR)2 LHC / RHC Q21 and E12 correlations LHC mn / SUSY mn M0n + kMS different isotopes and states with different M A2n=GM2n AM =<gM> M Energy spectra 4,3,2 body

  4. Spectroscopic detectors • ELEGANT- MOON, • DCBA • NEMOIII - Super NEMO • 1. E12-Q12 identify mn term • 2. Detector ≠ source • Select bb nuclide by • Qbb, Z, Enrichment, 2nbb • 3. Small RI-BG :E(RI) < Qbb • b/a,g separation • Major BG : 2nbb tail in onbb window. E-resolution !

  5. Interference A0n = XL + XRXL = Light n + SUSY (+Heavy n) = mn M0n + kMS = mn M0n[(1 + (k/ mn) (Ms/M0n) ]Cancellation at A=76 (left fig.) or 136(right), but not at other A’ because of the different short-range/long range matrix elements. Need measurements with different bb nuclides. . Vergados 07

  6. Nuclear matrix elementsQRPA M0n ~ 24 /r = 18/A1/3 within a factor 1.3

  7. Mass sensitivities and nuclear sensitivity <mn> = SN-1/2 (Neff)-1/2d1/2 • SN-1/2=13 (GM2/0.01 A)-1/2 • Nuclear sensitivity : mn • N=1 t y and Y0n =d = 1 • SN-1/2 =20~10 meV for M=25/R • Neff = e0n N ton year • = No signals for 90 % CL ~2.3 if B~0 ~1.6 + 1.7 (BN)1/2 • BG =B/t y N ton year B=[B(RI) + B(2n)] B(2n)=4.2(e2n/t2n1/2)(100/A), e2n 10-7 and t2n1/2 1020 M; excited stateand NdM=M/3

  8. Mass sensitivities and nuclear sensitivity <mn> meV= (SN)-1/2 (e0n N)-1/2d1/2 • SN = G0nM2 /0.01A/170) • M=25/R ~ 4 • Small BG or N • ~ 2.3 • <mn> = 2.3SN -1/2 (e0n N)-1/2 • Large BG or N • ~ 1.7 (BN)1/2 • <mn> = 1.3SN -1/2 (e0n)-1/2 • N-1/4 B1/4 N-1/2 N-1/4

  9. Spectroscopic DBD BG= 2nbb

  10. 130Te B =6000for CUORITINOB=200 for 0.01 /y kev kg of TeO2

  11. Excited 0+ states bb-g-g reduce BG’s 2nbb, RI. • Cancellation, but not at both. • GRS and EXS T0n = G |Mnmn +Ms l |2 Mn = M(1+) + M(J>1+) Nd M/3 is assumed for deformation change.

  12. Excited state for e0n, e2n = 2/3 of GR by g , and M= same as GR

  13. 150Nd -- 150Sm deformation 150Nd E(2) 0.13 MeV Q MeV G0n 150Sm GS 0+ E(2) 0.334 MeV 3.3613.4 0.74 MeV E(2) 0.34 MeV 2.63 3 E0 1.255 MeV E(2) 0.16 MeV 2.11 1.3 E2 Simucovic 1/4 ~ 1/6 of M due to deformation change. M0n due to change of deformation is 1/3? M0n to the excited, but same deformation is 1 RCNP/MSU 3He,t t, 3He Zergers R

  14. Charge exchange reactions RCNP Osaka High DE t- s response at low and high 1+ 2- statesD. Freckers, R. Zegers, MSU/RCNP/KVI 1+ Suhonen 2- H. Ejiri, PR 380 ‘2000

  15. Photon probes T,Tz=5,4 Polarized GeV-MeV photons from laser scattered off GeV electronsfor electric and magneic trasitions. T_=IAS g T,Tz=5,5 T,Tz=6,6 T,Tz=5,5 b H. Ejiri PRL 21 ’68, H. Ejiri PR 38 ‘78 T,Tz=6,6 bb T,Tz=4,4

  16. MOON detector conceptional sketch Multi-layers, 2 for bb and all others active shields Each with 1PL+2PS 1.3 m-1.3 m- 4 cm 25 kg One unit 100 mod., bb:30 kg, 1 m2–4m, H. Ejiri, et al., PRL, 85, 2000, 2917. H. Ejiri et al., Czech. J. Phsy. 54, 2004, 317. Based on ELEGANT V

  17. Concluding remarks 1. DBD studies of E-Q correlations for 2-3 isotopes and/or states are indispensable for identifying the 0nbbn-mass processes. 2. They can be realistic by spectroscopic DBD studies with detector≠bb souces. 82Se , 100Mo 150Nd are good bb candidates. 3. Recent QRPA/RQRPA give M0n~18/A1/3. Nuclear sensitivity, the mass for N=1 t y Y0n=1, is 20 meV for 76Ge and 10 meV for 82Se, 100Mo, 130Te, 136Xe. 5. Then QD ~100 meV and IH~30 meV masses are studied by N~0.1 and 1 t y with 76Ge and 82Se, 100Mo, 130Te, 136Xe . 6. Spectroscopic experiments (MOON, SuperNEMO) can access the IH masses with realistic s ~ 2.2 % and ~20 mBq/t . 7. Charge exchange nuclear reactions and photo nuclear reactions are used to check the M0n calculations. H. Ejiri, J. Phys. Soc. Japan, Invited Review, 74 (2005) 2101. H. Ejiri, Mod. Phys. Lett. A, Vol. 22, No. 18 (2007) pp. 1277-1291.

  18. MOON collaboration H.Ejiri*, T.Itahashi, K.Matsuoka, M.Nomachi, T. Shima, • S. Umehara, RCNP and Physics OULNS, Osaka Univ. • P.J.Doe, R.G.H.Robertson*, D.E.Vilches, J.F.Wilkerson、D. I. Will. CENPA, Univ. Washington. • S.R.Elliott, V. Gehman, LANL • J.Engel. Phys.Astronomy, Univ. North Carolina. • M.Finger, M. Finger, K. Kuroda, M. Slunecka , V. Vrba. • Phys. Charles Univ. and CTUPrague • K.Fushimi, H. Kawauso, K. Yasuda, GAS, Tokushima Univ.Tokushima • M. Greenfield, ICU, Tokyo. • R. Hazama, Hiroshima Univ. • H. Nakamura, NIRS. • A. Para FNAL • A. Sissakian, V. Kekelidze, V. Voronon, G. Shirkov A. Titov, JINR • V. Vatulin, P.Kavitov, VNIIEF • S. Yoshida, Tohoku Univ. Sendai • * Contact persons.

  19. Thank you for your attention

  20. Neutrino Weak probes C.Volpe p + Hg  n p+, p+  m+ +nm m+ e+ + ne + anti-nm SNS 1 6 1015 7 1014 J-PARC 3 1.2 1015 3 1014 • . 3 GeV-p pn

More Related