1 / 42

Margem de Fase e Margem de Ganho

Margem de Fase e Margem de Ganho. Margem de Fase e Margem de Ganho. Considere uma FTMA G estritamente própria e sem pólos ou zeros no SPD fechado, com a possível exceção de um pólo simples na origem. O critério de estabilidade de Nyquist leva em conta o ganho e a fase

keiki
Download Presentation

Margem de Fase e Margem de Ganho

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Margem de Fase e Margem de Ganho

  2. Margem de Fase e Margem de Ganho Considere uma FTMA G estritamente própria e sem pólos ou zeros no SPD fechado, com a possível exceção de um pólo simples na origem. O critério de estabilidade de Nyquist leva em conta o ganho e a fase De G(jw) com relação ao ponto crítico -1.

  3. Im -1 Re Margem de Fase e Margem de Ganho Considere o sistema original estável. Como fica a estabilidade para o sistema perturbado?

  4. Margem de Fase e Margem de Ganho

  5. Margem de Fase e Margem de Ganho

  6. Margem de Fase e Margem de Ganho

  7. Margem de Fase e Margem de Ganho

  8. Margem de Fase e Margem de Ganho

  9. Margens de Ganho e Fase pelo diagrama de Bode

  10. Análise de estabilidade via diagrama de Bode • Critério de estabilidade via diagrama de Bode. Considere uma FTMA GMA estritamente própria e sem pólos ou zeros no SPD fechado, com a possível exceção de um pólo simples na origem. Assuma que a resposta em frequencia de MA tenha apenas um único ponto de frequência de cruzamento de fase • e um único ponto de frequencia de cruzamento de ganho • Neste caso, a FTMF é estável se e só se MG>0 dB e MF>0 • Se a frequência de cruzamento de ganho é menor do que a frequência de cruzamento de fase • então a malha fechada é estável.

  11. Margem de Ganho negativa Margem de Ganho positiva 1 1 -1 -1 Margem de fase negativa Margem de fase positiva Sistema instável Sistema estável

  12. Margem de Ganho positiva Margem de Ganho negativa dB dB 0 0 Margem de fase positiva Margem de fase negativa Sistema estável Sistema instável

  13. Estabilidade via diagrama de Bode K em dB Margem de fase Este sistema é estável.

  14. Estabilidade via diagrama de Bode Neste exemplo, o sistema em malha fechada com realimentação unitária negativa é instável.

  15. Estabilidade via diagrama de Bode K MG(dB) Estável? C 1 +12 Sim 4 0 Condicionalm.estável 20 -14 Não Considere um processo com função de transferência Gp(s). Se for utilizado um controle proporcional, determine a estabilidade em malha fechada para 3 valores de Kc: 1, 4 e 20. Observe que o gráfico da fase é o mesmo para os três casos (por que?).

  16. A margem de ganho e de fase são relacionadas Válido para sistemas de fase mínima Bode mostrou que A margem de fase é largamente determinada pela inclinação da curva de ganho na frequência de crossover de ganho

  17. A margem de ganho e de fase são relacionadas exemplo:para inclinação na frequência de cross over do ganho de –40 dB/década temos que MF= 0 - correção Para ter uma boa margem de fase, é desejável que a inclinação da curva na frequência seja de –20 dB/dec

  18. Margem de Fase e Desempenho Transitório Apenas para sistemas de segunda ordem Relação entre MF e z A aproximação linear se aplica apenas para valores de  no intervalo 0   0,6. Valores aceitáveis para a taxa de amortecimento  : 0,3   0,7 Portanto: 30oMF  65o.

  19. Observações • Para sistemas de ordem maior do que 2, são disponíveis técnicas matemáticas para a obtenção da correlação exata entre margem de fase e coeficiente de amortecimento, porém são muito trabalhosas e de pequeno valor prático. • Em geral, valores grandes de MG e MF correspondem a respostas em malha fechada mais lentas, enquanto que valores menores, resultam em respostas mais rápidas mas mais oscilatórias. • A especificação da MF e da MG requer um compromisso entre desempenho e robustez. Margem de ganho MG e margem de fase MF  intervalos aceitáveis (depende do autor):

  20. Exemplo onde a margem de fase e a margem de ganho fornecem falsa noção de robustez de estabilidade

  21. Frequência de Corte e Largura de Banda A frequência de corte (ou de canto ou de largura de banda) wc é definida como sendo aquela a partir da qual o ganho cai abaixo de 3 dB com relação ao ganho de baixas frequências. A região de frequências , é denominada largura de banda (ou largura de faixa, ou ainda, banda passante),

  22. Frequência de Corte e Largura de Banda • Freqüência de corte: em geral, definido como especificação de projeto para sistema de malha fechada • A frequência de corteωc pode ser definida como a frequência no qual |G(jω)| = 0.707. • (-3dB corresponde a aproximadamente |G(jω)| = 0.707) • alguns autores usam o ponto de –6dB ao invés do ponto –3dB. • A largura de banda (bandwidth) indica a faixa de frequencias para qual ocorre acompanhamento (tracking) satisfatório do set-point. Em particular, ωc é a maior frequência para que um set point senoidal não seja atenuado mais do que 70.7%.

  23. Frequência de Corte e Largura de Banda • O sistema filtra os componentes do sinal cujas freqüências são maiores do que a freqüência de corte e transmite aquelas componentes do sinal com freqüências menores do que a freqüência de corte. • A largura de faixa fornece uma indicação da velocidade de resposta de um sistema de controle.

  24. Frequência de Corte e Largura de Banda Para sistemas de segunda ordem, podemos relacionar a frequência de largura de banda (frequência de corte) com coeficiente de amortecimento e tempo de resposta (tempo de acomodação, subida, pico,...)

  25. ·A velocidade de resposta a uma entrada do tipo degrau será proporcional a wB. ·        Exemplo: considere duas funções de transferência de malha fechada T1 e T2: A resposta em freqüência, a resposta ao degrau e a resposta à rampa dos dois sistemas estão mostradas a seguir:

  26. ·Considere agora os dois sistemas de segunda ordem a seguir, com funções de transferência de malha fechada: Ambos os sistemas possuem sobre-sinal de 15%, mas T4possui um tempo de pico de 0.12 segundos, comparado a 0.36 segundos para T3. Observe também que o tempo de acomodação para T4é de 0.37 segundos, enquanto que é de 0.9segundos para T3.

  27. Frequência de Corte e Largura de Banda • Uma estimativa grosseira que pode ser usada • frequência de corte=frequência natural=k/(tempo de resposta). • Fatores para especificação da largura de banda (da malha fechada) : • i) fidelidade de reprodução dos sinais de entrada pela saída; • ii) características de filtragem requeridas para o ruído de alta frequência.

  28. Carta de Nichols [família de curvas dos ganhos (em dB) e ângulos de fase (em graus) de malha fechada]

  29. Outro exemplo de Carta de Nichols [os ganhos não estão em dB]

  30. Curvas de Módulo Constante para Malha Fechada _Círculos-M

  31. Círculos deganho de malha fechada constante

  32. Curvas de Fase Constante para Malha Fechada_Círculos-N

  33. Im(G) Círculos defase constante Re(G) -1 -0.5 0 j a r c y G 1+G Circunferência (centro = -0.5-jc, raio = r)

  34. Im(G) Círculos defase constante Re(G) -1 -0.5 0 j a y r -c y Circunferência (centro = -0.5-jc, raio = r) G 1+G

  35. A função de transferência de malha fechada pode ser obtida superpondo-se o diagrama polar de G(jw) nos diagramas dos círculos-M e círculos-N. Observe que o pico de ressonância da função de transferência de malha fechada ocorre em w=w4 , onde o diagrama polar da função de transferência de malha aberta G(jw)é tangente a um círculo-M com M=2.

  36. Exemplo: Carta de Nichols Considere um sistema com realimentação unitária com uma função de transferência de malha aberta dada por: O diagrama de Nichols para G(jw)superposto à carta de Nichols é mostrado abaixo:

  37. Determinar para a MF Freq. Ress wr Freq corte wc

  38. ·A magnitude máxima da função de transferência de malha fechada é aproximadamente igual a +2.5dBe ocorre em wr=0.8 rad/s. ·A frequência de corte, onde a magnitude de malha fechadaé igual a –3dB , é igual a wcMF=1.33rad/s, ponto no qual a fase de malha fechada é –142o.

More Related