1 / 16

PERSAMAAN LINE AR

PERSAMAAN LINE AR. DETERMINAN. MINOR & PERLUASAN KOFAKTOR. Minor. Yang dimaksud dengan MINOR unsur a ij adalah determinan yang berasal dari determinan orde ke-n tadi dikurangi dengan baris ke-i dan kolom ke-j. Dinotasikan dengan M ij Contoh Minor dari elemen a ₁₁. Minor.

kemal
Download Presentation

PERSAMAAN LINE AR

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PERSAMAAN LINEAR DETERMINAN

  2. MINOR & PERLUASAN KOFAKTOR

  3. Minor • Yang dimaksud dengan MINOR unsur aij adalah determinan yang berasal dari determinan orde ke-n tadi dikurangi dengan baris ke-i dan kolom ke-j. • Dinotasikan dengan Mij • Contoh Minor dari elemen a₁₁

  4. Minor • Minor-minor dari Matrik A (ordo 3x3)

  5. KofaktorMatriks • Kofaktor dari baris ke-i dan kolom ke-j dituliskan dengan • Contoh : • Kofaktor dari elemen a11 • Kofaktordarielemena23

  6. KofaktorMatrik • Cara cepat untuk menentukan apakah penggunaan tanda + atau tanda – merupakan penggunaan tanda yang menghubungkan Cij dan Mij berada dalam baris ke – i dan kolom ke – j dari susunan : Misalnya C11 = M11, C21 = -M21 , C44 = M44, C23 = -M23

  7. DeterminanMatrikdenganEkspansiKofaktor • Determinanmatrik A yang berukurann x n dapatdihitungdenganmengalikanelemen – elemendalamsuatubaris (ataukolom) dengankofaktor – kofaktornyadanmenambahkanhasil kali – hasil kali yang dihasilkan, yaitusetiap 1 in dan 1  j n , maka • det(A) = a1jC1j + a2jC2j + … + anjCnj (ekspansikofaktorsepanjangkolomke – j) • det(A) = ai1Ci1 + ai2Ci2 + … + ainCin (ekspansikofaktorsepanjangbariske – i)

  8. DeterminanMatrikdenganEkspansiKofaktorpadaBaris • Misalkan ada sebuah matriks A berordo 3x3 • Determinan Matriks A dengan metode ekspansi kofaktor barispertama |A|

  9. DeterminanMatrikdenganEkspansiKofaktorpadaBaris • Determinan Matriks A dengan metode ekspansi kofaktor baris kedua • |A| • Determinan Matriks A dengan metode ekspansi kofaktor baris ketiga • |A|

  10. DeterminanMatrikdenganEkspansiKofaktorpadaKolom • Misalkan ada sebuah matriks A berordo 3x3 • Determinan Matriks A dengan metode ekspansi kofaktor kolompertama • |A|

  11. DeterminanMatrikdenganEkspansiKofaktorpadaKolom • Determinan Matriks A dengan metode ekspansi kofaktor kolomkedua • |A| • Determinan Matriks A dengan metode ekspansi kofaktor baris ketiga • |A|

  12. Contoh1 • Misalkankitapunyamatriks A =  • Tentukan minor entri a11, a12, dan a13 • Tentukanjugakofaktorentri M11, M12dan M13! • Penyelesaian : • minor entri a11adalah M11 • kofaktor a11adalah C11

  13. Contoh1 • A =  • minor entria12adalahM12 • kofaktor a11adalah C11 • minor entria13adalahM13 • kofaktora13adalahC13

  14. Contoh2 Contoh: Hitung Det(A) bila A = Denganmenggunakanekspansikofaktorsepanjangbarispertama = 3 - 1 + 0 = (3)(-4) – (1)(-11) = -12 + 11 = -1

  15. Adjoint • Definisi: • Jika A sebarangmatriks n x n danCijadalahkofaktoraij, makamatriks dinamakanmatrikskofaktor A • Transpose darimatrikskofaktoradalahadjoint (seringditulisadj(nama_matriks) • Transpose matrikskofaktor A adalahAdjoint A (adj(A))

  16. Adjoint • Contoh: • Carinilaikofaktor • C11 = (-1)1+1(6*0 – 3*(-4)) = 12 • C12= (-1)1+2 (1*0 – 3*2) = 6 • C13= (-1)1+3 (1*(-4) – 6*2) = -16 • C21= (-1)2+1 (2*0 – (-1)*(-4)) = 4 • C22= (-1)2+2 (3*0 – (-1)*2) = 2 • C23= (-1)2+3 (3*(-4)– 2*2) = 16 • C31= (-1)3+1 (2*3 – (-1)*6) = 12 • C32= (-1)3+2 (3*3 – (-1)*1) = -10 • C33= (-1)3+3 (3*6 – 2*1) = 16 • MatriksKofaktor A • Transpose matrikskofaktorA adalahAdjoint A (adj(A))

More Related