1 / 24

Moda y mediana

Moda y mediana. NM4 Matemática Estadística y probabilidades. Introducción. En estadística se usan algunos términos que reflejan ciertas tendencias dentro de una muestra. Dentro de estos términos encontramos dos que abordaremos en profundidad: La mediana . La moda . Mediana. Mediana.

kenda
Download Presentation

Moda y mediana

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Moda y mediana NM4 Matemática Estadística y probabilidades

  2. Introducción • En estadística se usan algunos términos que reflejan ciertas tendencias dentro de una muestra. • Dentro de estos términos encontramos dos que abordaremos en profundidad: • La mediana. • La moda.

  3. Mediana

  4. Mediana • ¿Qué se entiende por el concepto de mediana? • Si pensamos en términos geométricos, la mediana está referida a la unión de un vértice cualquiera con el punto medio del lado opuesto a ese vértice. • Es decir, se refiere a un punto al medio de una recta.

  5. Mediana • Algo semejante ocurre en estadística. • Si se ordena una tabla de datos de menor a mayor o viceversa, la mediana se refiere a aquel dato que se encuentra en el centro de ese listado. • Pero pueden presentarse dos situaciones: • Un listado con un número impar de datos. • Y otro con un número par de datos.

  6. Mediana de datos impares • Con un número impar de datos encontrar la mediana es fácil. • Resultará ser el dato que se encuentra justo al centro del listado. • También podemos usar la siguiente fórmula para determinar la posición del dato central: (n+1)/2 = mediana de datos impares.

  7. Ejemplo 1: mediana con datos impares • Las edades de un equipo de baby fútbol senior son las siguientes: • 58; 46; 50; 58; 57. • Es necesario ordenar los datos en forma creciente o decreciente. • En forma creciente sería: • 46; 50; 57; 58; 58. • El dato que se encuentra al centro es 57. • Por lo tanto, la mediana es 57.

  8. Ejemplo 2: mediana con datos impares • La siguiente tabla muestra las notas obtenidas por un curso en una prueba de Lenguaje y su frecuencia.

  9. Ordenando • Si ordenamos los números de forma creciente, encontraríamos que: • (n+1)/2 sería la ubicación de la mediana. • (41+1)/2 = 42/2 = 21. 2,5 - 3 - 3 - 3,5 - 3,5 - 3,5 - 3,5 - 3,5 - 3,5 - 3,5 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4,5 - 4,5 - 4,5 - 4,5 - 4,5 - 4,5 - 5 - 5 - 5,5 - 5,5 - 5,5 - 5,5 - 5,5 - 5,5 6 - 6 - 6 - 6 - 6 - 6,5 - 6,5 - 7 - 7 • Por lo tanto, la mediana del curso en esta prueba corresponde a la nota 4,5.

  10. Mediana de datos pares • Con un número par de datos, encontrar la mediana es sencillo. • Resultará ser la media aritmética de los dos datos que se encuentran al centro del listado. • También podemos usar la siguiente fórmula para determinar la posición de estos dos datos centrales: n/2 y n/2 + 1 • Entonces, la mediana para un número par de datos será la media aritmética entre estos dos datos.

  11. Ejemplo 1: mediana con datos pares • La talla de pantalón de 8 amigos es la siguiente: 48 - 54 - 50 - 56 - 48 - 50 - 58 - 54 • Si ordenamos los datos en forma creciente, veremos que los datos centrales corresponden a: 48 - 48 - 50 - 50 - 54 - 54 - 56 - 58 • La mediana corresponde a la media aritmética entre estos dos datos. (50 + 54)/2 = 104/2 = 52 • Entonces, 52 es la mediana de esta muestra.

  12. Ejemplo 2: mediana con datos pares • La edad de los compañeros y compañeras de una oficina se resume en la siguiente tabla:

  13. Ordenando • Al ordenar los números de forma decreciente encontramos: 35 - 31 - 31 - 30 - 28 - 28 - 28 - 26 - 26 - 26 - 25 - 25 - 25 - 25 - 23 - 23 - 23 - 23 - 22 - 22 • El par de datos centrales está ubicado en: n/2 y n/2 + 1. • Es decir: 20/2 = 10 20/2 + 1 = 10 + 1 = 11 • Entonces, los términos medios que buscamos están en la posición 10 y 11.

  14. Continuando • Si buscamos esos números, son: 35 - 31 - 31 - 30 - 28 - 28 - 28 - 26 - 26 - 26 - 25 - 25 - 25 - 25 - 23 - 23 - 23 - 23 - 22 - 22 • Ahora la mediana será la media aritmética entre estos dos términos, es decir, entre 26 y 25. • Entonces: • (26 + 25)/2 • 51/2 • 25,5

  15. Moda

  16. Moda • Cuando hablamos de moda, por ejemplo en vestuario, se relaciona con aquella prenda que se usa masivamente. • Entonces, se podría inferir que la moda tiene que ver con la frecuencia con que se usa cierta prenda de vestir.

  17. Moda • En estadística ocurre algo semejante. • La moda es aquel dato que más se repite. • Es decir, aquel dato que tiene mayor frecuencia.

  18. Ejemplo 1 • En el ejemplo anterior, con respecto a las notas en una prueba de Lenguaje, se tiene la siguiente tabla:

  19. Ejemplo 1 • Claramente la frecuencia mayor la encontramos en 8. • Entonces, la moda de las notas de este curso corresponde a un 4,0.

  20. Ejemplo 2 • En el ejemplo anterior de las edades de los compañeros y compañeras de oficina, la tabla es la siguiente:

  21. Ejemplo 2 • Encontramos que hay dos frecuencias que son igualmente altas. • Ambas corresponden a 4. • Entonces, esta es una distribución bimodal, que corresponde a las edades de 23 y 25.

  22. Ejemplo 3 • Las estaturas de los alumnos y alumnas de un curso en centímetros son: 159 – 161 – 170 – 181 – 154 – 162 – 170 – 169 – 155 – 163 – 185 – 175 – 180 – 185 – 170 – 171 – 185 – 162 – 181 – 167 – 159 – 185 – 167 – 183 – 190 – 172 – 185 – 167 – 183 – 178 – 160 – 185 – 171 – 170 – 169 – 180 – 190 – 170 – 171 – 180 – 185 – 170

  23. Ejemplo 3 • Si observamos con atención y sacamos cuentas, veremos que: 159 – 161 – 170 – 181 – 154 – 162 – 170 – 169 – 155 – 163 – 185 – 175 – 180 – 185 – 170 – 171 – 185 – 162 – 181 – 167 – 159 – 185 – 167 – 183 – 190 – 172 – 185 – 167 – 183 – 178 – 160 – 185 – 171 – 170 – 169 – 180 – 190 – 170 – 171 – 180 – 185 – 170

  24. Ejemplo 3 • Entonces la estatura de mayor frecuencia corresponde a 185 cm. • Por lo que la moda de la estatura de esta muestra corresponde a 185 cm.

More Related