530 likes | 656 Views
New Opportunities for Hadron Physics with the Planned PANDA Detector. Overview of the PANDA Physics Program The PANDA Detector Selected Simulation Results Charmonium: EM decays Charmonium: Open charm decays Charmonium in nuclear matter. Why don‘t we observe isolated quarks?
E N D
New Opportunities for Hadron Physics with the Planned PANDA Detector • Overview of the PANDA Physics Program • The PANDA Detector • Selected Simulation Results • Charmonium: EM decays • Charmonium: Open charm decays • Charmonium in nuclear matter James Ritman Univ. Giessen
Why don‘t we observe isolated quarks? • Q-Q potential in the charmonium system • Are there other forms of hadrons? e.g. Hybrids qqg or Glueballs gg • Why are hadrons so much heavier than their constituents? • p-A interactions What Do We Want To Know? James Ritman Univ. Giessen
Why Don’t We See Isolated Quarks? James Ritman Univ. Giessen
Charmonium – the Positronium of QCD • Charmonium • Positronium Mass [MeV] Binding energy [meV] 4100 y ¢¢¢ (4040) Ionisationsenergie P (~ 3940) 3 2 0 3900 D 3 (~ 3800) P (~ 3880) 3 3 D 3 S 3 S 3 1 3 3 3 D 1 2 1 0 1 2 3 D P (~ 3800) D 3 -1000 3 1 1 y ¢¢ (3770) 0 2 D 2 P 3 3 D 2 P 3 D 3 3 2 1 2 2 S 3 2 2 S 1 1 1 2 P 1 3 Threshold ¢ ~ 600 meV 0 y (3686) 3700 1 2 P 3 0 10-4 eV h ¢ (3590) -3000 c c (3556) 2 h (3525) c c (3510) 1 3500 c (3415) 0 -5000 3300 1 S 3 8·10-4 eV 1 S 1 1 0 -7000 y (3097) 3100 0.1 nm + - e e C 1 fm h (2980) C c 2900 James Ritman Univ. Giessen
In pp annihilation all mesons can be formed Resonance cross section Measured rate Beam CM Energy Why Antiprotons? • e+e- annihilation via virtual photon: only states with Jpc = 1-- • Resolution of the mass and width is only limited by the beam momentum resolution James Ritman Univ. Giessen
High Resolution • Crystal Ball: typical resolution ~ 10 MeV • Fermilab: 240 keV p/p < 10-4 needed James Ritman Univ. Giessen
Open Questions c (11S0) (Simu results)experimental error on M > 1 MeVG hard to understand in simple quark models c’ (21S0) Crystal Ball result way off study of hadronic decays hc(1P1) Spin dependence of QQ potential Compare to triplet P-States LQCD NRQCD James Ritman Univ. Giessen
Open Questions States above the DD threshold Higher vector states not confirmed Y(3S), Y(4S) Expected location of 1st radial excitation of P wave statesExpected location of narrow D wave states Only Y(3770) seenSensitive to long range Spin-dependent potential (Simu results) James Ritman Univ. Giessen
Why Are Hadrons So Heavy? James Ritman Univ. Giessen
Hadron Masses 2Mu + Md ~ 15 MeV/c2 Mp = 938 MeV/c2 Protons = (uud) ? no low mass hadrons (except p, K, h) spontaneously broken chiral symmetry (P.Kienle)
u u u u u u d d d d d d d d d d d d Hadron Production in the Nuclear Medium Mass of particles may change in dense matter Quark atom _ D+ d c attractive _ d c D- repulsive James Ritman Univ. Giessen
J/Y Absorption in Nuclei J/Y absorption cross section in nuclear matter p + A J/Y + (A-1) (Simu results)
Comparison of p-A Reactions to A-A Much lower momentum for heavy producedparticles (2 GeV for “free”)(Effects are smaller at high momentum) Well defined nuclear environment (T and r) James Ritman Univ. Giessen
The Experimental Facility James Ritman Univ. Giessen
HESR: High Energy Storage Ring Beam Momentum 1.5 - 15 GeV/c High Intensity Mode: Luminosity 2x1032 cm-2s-1 (2x107Hz) dp/p (st. cooling) ~10-4 High Resolution Mode: Luminosity 2x1031 cm-2s-1 dp/p (e- cooling) ~10-5 James Ritman Univ. Giessen
Central Tracking Detectors • Straw-Tubes • Mini-Drift-Chambers • MVD: (Si) 5 layers • ~ 9 Mio pixels • Andrei Sokolov HK39.5 Thursday 15:00
PID • ToF • Muon Detectors • DIRC (DIRC@BaBar) James Ritman Univ. Giessen
Open Charm pp DD DKpp „no backgroundevents added“ Mass Resolution ~ 10 MeV/c2 James Ritman Univ. Giessen
Longitudinal Scale up by x10! 0.15 < Vz < 5 mm signal DPM background Vertex Distributions GEANT4 Transverse D meson signal DPM background James Ritman Univ. Giessen
DD Missing Mass signal DPM background N.B. different x scale | Mmiss2|< 0.001 GeV2 (tight cut) James Ritman Univ. Giessen
Open Charm As an example of the Pbar P Y(3770) DD Analysis Plot MDD – MD – MD + 2x1869MeV raw S/B ~ 10-7 James Ritman Univ. Giessen
Detection of Rare Neutral Channels As an example: hcggBackground: p0g, p0p0 hc:p0g:p0p0 1:50:500 Comparison with E835 (PLB 566,45) PANDA James Ritman Univ. Giessen
Dimuon Spectrum in p+Cu • Beam momentum “on resonance” • Full background simulations (result scaled up) • Muons from J/Y have high Pt • J/Y has low Pt (coplanar) J/Y James Ritman Univ. Giessen
Summary • GSI will explore the intensity frontier • High luminosity cooled p from 1-15 GeV/c • Wide physics program including • Charmonium spectroscopy • pbar-A reactions • Search for glueballs and charm hybrids James Ritman Univ. Giessen
In part supported by: GSI BMBF 06GI144 DFG James Ritman Univ. Giessen
Target • A fiber/wire target will be needed for D physics, • A pellet target is conceived: • 1016 atoms/cm2 for D=20-40mm 1 mm James Ritman Univ. Giessen
Electromagnetic Calorimeter James Ritman Univ. Giessen
Example reaction: pp J/y + F (s = 4.4 GeV/c2) Tracking Resolution Single track resolution Invariant mass resolution J/y m+m- F K+K- s(J/y) = 35 MeV/c2 s(F) = 3.8 MeV/c2 James Ritman Univ. Giessen
Staged Construction James Ritman Univ. Giessen
Pbar-Nucleus Interactions The interaction of charmed mesons with the baryonic environment strongly effects production rates near threshold James Ritman Univ. Giessen
p _ X 3GeV/c X- Strange Baryons in Nuclear Fields Hypernuclei open a 3rd dimension (strangeness) in the nuclear chart • Double-hypernuclei:very little data • Baryon-baryon interactions:L-N only short ranged (no 1p exchange due to isospin) L-L impossible in scattering reactions K+K Trigger secondary target • X-(dss)p(uud)L(uds)L(uds)
_ Probe large separations with highly excited qq states Charmonium Spectroscopy James Ritman Univ. Giessen
The GSI Future Project • Nuclear Structure: • paths of nucleo-synthesis • Heavy Ion Physics: • hot and dense nuclear matter • Ion and laser induced Plasma: • very high energy densities • Atomic physics: • QED, strong EM fields, Ion-Matter interactions • Physics with Antiprotons • properties of the strong force Project approved Feb 2003 James Ritman Univ. Giessen
Open Questions • The c(11S0) • The c(21S0) • The hc(1P1) • States above the DD threshold James Ritman Univ. Giessen
Proton Form Factors at large Q2 At high values of momentum transfer |Q2| the system should be describable by perturbative QCD. Due to dimensional scaling, the FF should vary as Q4. The time like FF remains about a factor 2 above the space like. These differences should vanish in pQCD, thus the asymptotic behavior has not yet been reached at these large values of |q2|. (HESR up to s ~ 25 GeV2) q2>0 q2<0 James Ritman Univ. Giessen
Mixing With Mesonic States Width: could be narrow (5-50 MeV) since DD suppressed for some states O+- DD,D*D*,DsDs (CP-Inv.) (QQg) (Qq)L=0+(Qq)L=0 (Dynamic Selection Rule) If DD forbidden, then the preferred decay is (ccg) (cc) + X , e.g. 1-+ c + h James Ritman Univ. Giessen
Spontaneous Breaking of Chiral Symmetry Although the QCD Lagrangian is symmetric, the ground state need not be. (e.g. Fe below TCurie ) Example:
Exotic Hadrons James Ritman Univ. Giessen
g g g Glueballs C. Morningstar PRD60, 034509 (1999) Self interaction between gluons Construction of color-neutral hadrons with gluons possible exotic glueballs don‘t mix with mesons (qq) 0--, 0+-, 1-+, 2+-, 3-+,... James Ritman Univ. Giessen
Charm Hybrids ccg Prediction in QCD: Collective gluon excitation (Gluons contribute to quantum numbers) Ground state: JPC = 1-+ (spin exotic) distance between quarks James Ritman Univ. Giessen
Partial Wave Analysis Partial wave analysis as important tool Example of 1-+(CB@LEAR) pd X(1-+)+p+p, X h p Strength ~ qq States ! Signal in production but not in formation is interesting ! James Ritman Univ. Giessen
The QCD vacuum is not empty Hadron masses are generated by the strong interaction with <qq> (also with gluon condensate) Quark Condensate The density of the quark condensate will change as a function of temperature and density in nuclei. This should lead to modifications of the hadron’s spectral properties. James Ritman Univ. Giessen
Hadrons in the Nuclear Medium Reduction of <qq> Spectral functions <qq> S.Klimt et al., Nucl. Phys. A515, 429 (1990). W.Peters et al., Nucl. Phys. A632, 109 (1998).
Deeply Bound Pionic Atoms Pionic capture is possible with the appropriate choice of kinematics: d+n 3He + p- These results indicate a mass shift of ~25 MeV for pions at normal nuclear matter density. James Ritman Univ. Giessen
Kaons in Nuclear Matter Kaon and anti-kaon masses should no longer be degenerate in nuclear matter. Expected signal: increased K- production compared to K+. J.Schaffner-Bielich et al., Nucl. Phys. A (1997) 325. James Ritman Univ. Giessen
Measured K- Cross Section Comparison of proton-proton data with heavy ion data[2]: dramatic enhancement of the K- production probability KaoS [1] A.Sibirtsev et al., Z.Phys. A358 (1997) 101. [2] F.Laue et al., Phys.Rev. Lett. 82 (1999) 1640. [3] C.Quentmeier et al., Phys Lett B 515 (2001) 276. James Ritman Univ. Giessen