540 likes | 2.09k Views
momentos de inércia. Definição de momentos de inércia para áreas.
E N D
Definição de momentos de inércia para áreas Sempre que uma carga distribuída atua perpendicularmente a uma área e sua intensidade varia linearmente, o cálculo do momento da distribuição de carga em relação a um eixo envolverá uma quantidade chamada momento de inércia de área. Por exemplo:
Momento de inércia Por definição, os momentos de inércia de uma área diferencial dAem relação aos eixos x e y são dIx = y2dA e dIy = x2dA, respectivamente. Para a área inteira A, os momentos de inércia são determinados por integração; ou seja,
Teorema dos eixos paralelos para uma área O teorema dos eixos paralelos pode ser usado para determinar o momento de inércia de uma área em relação a qualquer eixoque seja paralelo a um eixo passando pelo centroide e em relação ao momento de inércia é conhecido.
Teorema dos eixos paralelos para uma área A primeira integral representa o momento de inércia da área em torno do eixo centroidal. A segunda integral é zero, pois o eixo x' passa pelo centroide C da área. Como a terceira integral representa a área total A, o resultado final é, portanto, Uma expressão semelhante pode ser escrita para Iy'; ou seja,
Bibliografia • Beer, F. P.; JOHNSTON JR, E. R.; EISENBERG, E. R.Mecânica vetorial para engenheiros: estática. 7.ed. SP: McGraw Hill - Artmed, 2006. • CRAIG JR, R. R. Mecânica dos materiais.2. ed. RJ: LTC, 2002. • HIBBELER, R. C. Estática: mecânica para engenharia. v.1.12. ed. SP: Pearson, 2011.