1 / 17

Quantitative phase estimation with a bright field microscope

Quantitative phase estimation with a bright field microscope . Sri Rama Prasanna Pavani , Ariel Libertun, Sharon King, and Carol Cogswell Micro Optical – Imaging Systems Laboratory, ECE, University of Colorado at Boulder http://moisl.colorado.edu. Frontiers in Optics 9/18/2007. Bright field.

mcanulty
Download Presentation

Quantitative phase estimation with a bright field microscope

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quantitative phase estimation with a bright field microscope Sri Rama Prasanna Pavani, Ariel Libertun, Sharon King, and Carol Cogswell Micro Optical – Imaging Systems Laboratory, ECE, University of Colorado at Boulder http://moisl.colorado.edu Pavani et al - Univ. of Colorado, Boulder Frontiers in Optics 9/18/2007

  2. Bright field Phase contrast DIC Digital Holography Phase imaging – What? How? • Transparent (phase) objects modulate only the phase of light • Convert phase modulations into detectable intensity modulations • Quantitative phase for weak phase objects • No phase wrapping • Halo and shading-off • Only for thin objects • Quantitative phase after reconstruction • No phase wrapping • Polarization sensitive • Only for thin objects • Multiple images • Quantitative phase after reconstruction • Thick phase objects • Single image • Vibration sensitive • Phase wrapping • No quantitative phase Pavani et al - Univ. of Colorado, Boulder

  3. Our method • Amplitude mask in the field diaphragm • Pattern is imaged on the sample • Phase object distorts the pattern • Record the distorted pattern • Analytical formula calculates phase Vs 0.2 0.1 (mm) 0.4 0.2 0 0.2 0.4 (mm) (mm) Pavani et al - Univ. of Colorado, Boulder

  4. Our method – 1D • Analytically relate deformation to the optical path length • Consider a 1D phase object p(x) • Ray R from point A, after refraction, appears as if it originated from B • Deformation t(x) is the distance between A and B Normal Tangent n2 p(x) n1 A B t(x) Pavani et al, “Quantitative structured-illumination phase microscopy”, submitted to Applied Optics, June 07 Pavani et al, “Structured-illumination quantitative phase microscopy”, CMB4, COSI 2007 Pavani et al - Univ. of Colorado, Boulder

  5. Our method – 2D 1D deformations After 1D integrations C1 C2 . . CN Quantitative Phase 2D deformation K1 K2 ………… KN Pavani et al, “Quantitative structured-illumination phase microscopy”, submitted to Applied Optics, June 07 Pavani et al - Univ. of Colorado, Boulder

  6. Simulation X 100 18 9 0 5 0 -5 Calculated Phase Quadratic phase 50 25 0 50 25 0 200 100 200 100 After 1D integrations 1D deformations X 100 18 9 0 5 0 -5 0 100 200 0 100 200 Error 8 4 0 -4 -8 (nm) Error Peak error is 5 orders less than peak phase 0 100 200 Pavani et al - Univ. of Colorado, Boulder

  7. Experimental Results Dot shift X,Y Deformations Original pattern 3 0 -3 360 180 0 240 480 Deformed pattern 3 0 -4 360 180 16.54 0 240 480 Quantitative phase 40 30 20 10 0 Profilometer Our method Object: Drop of optical cement 360 180 Pavani et al - Univ. of Colorado, Boulder 480 240 0

  8. Spatial Resolution • Size and the spacing between dots • Dots sampling the object; must obey Nyquist • Resolution enhancement by shifting d s M M shift right shift down shift diagonally + + + = N N = + + + • If dot size = diffraction limited spot size, quantitative phase imaging with the same resolution as a bright field image is possible Pavani et al - Univ. of Colorado, Boulder

  9. Spatial Resolution • Size and the spacing between dots • Dots sampling the object; must obey Nyquist • Resolution enhancement by shifting d s M M shift right shift down shift diagonally + + + = N N = + + + • If dot size = diffraction limited spot size, quantitative phase imaging with the same resolution as a bright field image is possible • Full resolution single image phase imaging with multi-colored dots Pavani et al - Univ. of Colorado, Boulder

  10. t = Dot shift Phase resolution • Smallest detectable change in path length • Minimum deformation w = detector pixel width M = magnification • Trapezoidal numerical integration s x x Example < M = 100x NA = 0.9 w = 7µm s = 1µm n1 = 1.5 n2 = 1 Pavani et al - Univ. of Colorado, Boulder Depth of field = 753nm

  11. Conclusion • Described wide field, full resolution quantitative phase imaging in a bright field microscope • Phase is calculated from deformation using an analytical formula • Conservative calculations with a 100x objective predict a phase resolution of 155nm Pavani et al - Univ. of Colorado, Boulder

  12. Acknowledgements • Prof. Rafael Piestun • Prof. Gregory Beylkin • Vaibhav Khire CDMOptics PhD Fellowship National Science Foundation Grant No. 0455408 Pavani et al - Univ. of Colorado, Boulder

  13. References • J. W. Goodman, Introduction to Fourier Optics, (Roberts & Company, 2005) • M Pluta, Advanced Light Microscopy, vol 2: Specialised Methods, (Elsevier, 1989) • M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy” Journal of Microscopy 214 (1), 7–12 (2004) • C. Preza, "Rotational-diversity phase estimation from differential-interference-contrast microscopy images," J. Opt. Soc. Am. A 17, 415-424 (2000) • Sharon V. King, Ariel R. Libertun, Chrysanthe Preza, and Carol J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE 6443, 64430M (2007) • E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999) • P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005) • M. Born and E. Wolf, Principles of Optics, ed. 7, (Cambridge University Press, Cambridge, U.K., 1999). • A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, (IEEE Press, New York, NY, 1988) • A. C. Sullivan, Department of Physics, University of Colorado, Campus Box 390, Boulder, CO 80309, USA and R. McLeod are preparing a manuscript to be called “Tomographic reconstruction of weak index structures in volume photopolymers.” • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al., “Optical coherence tomography,” Science1991 Nov 22;254(5035):1178-81. • A. F. Fercher, C. K. Hitzenberger, “Optical coherence tomography,” Chapter 4 in Progress in Optics 44, Elsevier Science B.V. (2002) • A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66 239–303 (2003) • M. R. Ayres and R. R. McLeod, "Scanning transmission microscopy using a position-sensitive detector," Appl. Opt. 45, 8410-8418 (2006) • Barone-Nugent, E., Barty, A. & Nugent, K. “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206, 194–203 (2002). • J. Hartmann, "Bemerkungen uber den Bau und die Justirung von Spektrographen," Z. Instrumentenkd. 20, 47 (1900). • I. Ghozeil, “Hartmann and other screen tests,” in Optical Shop Testing, D. Malacara, second edition Wiley, New York, 1992, pp. 367–396. • R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971). • V. Srinivasan, H. C. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105- (1984) • M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” Journal of Microscopy 198 (2), 82–87 (2000) • M. D. Feit and J. A. , J. Fleck, "Light propagation in graded-index optical fibers (T)," Appl. Opt. 17, 3990- (1978) • Haralick, Robert M., and Linda G. Shapiro. Computer and Robot Vision, Volume I. Addison-Wesley, 1992. pp. 28-48. Pavani et al - Univ. of Colorado, Boulder

  14. Applications and Future work • Industrial inspection, biological imaging • Extracting information from axial deformation • Extending the depth of field of the system • Fabrication of an amplitude mask with higher spatial resolution Pavani et al - Univ. of Colorado, Boulder

  15. Our method – How? 1 Dimensional analysis (from geometry) (Snell’s law, ) (Taylor expansion) C = 2 (C2 – C1) Pavani et al - Univ. of Colorado, Boulder

  16. Our method – How? M 2 Dimensional analysis N and Apply 1D solution along x and y to obtain P2 Pavani et al - Univ. of Colorado, Boulder

  17. Metrology - Cubic phase mask 120 80 40 0 360 180 480 240 0 Deformation Quantitative OPL profile 140 70 0 Cubic phase mask 360 180 480 240 0 Deformation Quantitative OPL profile Pavani et al - Univ. of Colorado, Boulder

More Related