230 likes | 362 Views
KMT/FPV – Fyzika pro přírodní vědy. 2. přednáška, 5. 11. 2013 Jiří Kohout Katedra matematiky, fyziky a technické výchovy, Fakulta pedagogická, Západočeská univerzita v Plzni. Obsah přednášky. Skalární a vektorové veličiny Členění klasické mechaniky Pohyb a klid
E N D
KMT/FPV – Fyzika pro přírodní vědy 2. přednáška, 5. 11. 2013 Jiří Kohout Katedra matematiky, fyziky a technické výchovy, Fakulta pedagogická, Západočeská univerzita v Plzni
Obsah přednášky • Skalární a vektorové veličiny • Členění klasické mechaniky • Pohyb a klid • Kinematika hmotného bodu – obecný případ (užití derivací) • Speciální případy - přímočarý pohyb rovnoměrný, rovnoměrně zrychlený, grafické znázornění • Pohyb po kružnici, analogie s přímočarým pohybem, normálové zrychlení
Členění klasické mechaniky 1 Klasická (newtonovská) mechanika – neuvažuje kvantové či relativistické efekty, platí ve standardních rozměrech (ne atomy, ne galaxie!) Členění podle zvoleného fyzikálního modelu: • Mechanika hmotného bodu (HB) – ignorujeme rozměry, všechna hmota je soustředěna v jednom bodě (fyzikální abstrakce - nic takového reálně neexistuje, ale někdy to tak můžeme brát…) • Mechanika tuhého tělesa – uvažujeme rozměry, ale síly mají jen pohybový, nikoliv deformační účinek (opět abstrakce – síla má deformační účinek, ale lze jej zanedbat) • Mechanika spojitých prostředí (kontinua) – zahrnuje v sobě mechaniku deformovatelných těles (uvažujeme i deformační účinky síly, zásadní význam např. ve stavitelství či strojírenství) a mechaniku tekutin (tj. kapalin a plynů)
Členění podle toho, čím konkrétně se zabývá: Kinematika – zkoumá pohyb bez ohledu na jeho příčiny, bere „jen“ jeho časové a prostorové souvislosti (základní veličiny: dráha, rychlost, zrychlení, čas…) Dynamika – zkoumá příčiny vzniku a změny pohybu (základní veličiny nad rámec kinematiky: hmotnost, síla, hybnost, moment síly či moment hybnosti) Statika (ne statistika ) – zkoumá tělesa nacházející se v klidu (v určité soustavě), působící síly a rovnováhu systému Členění klasické mechaniky 2
Diskutováno již v antice Herakleitos – vše je v neustálém pohybu, „Pantha rei“ – v překladu „vše plyne“ Naopak eleaté (např. Zenon z Eleje): pohyb je jenom zdání, ve skutečnosti neexistuje Důkazy neexistence pohybu – tzv. Zenonovy pohybové aporie (Achilles a želva, Letící šíp apod.) Později hledání absolutního pohybu či absolutního klidu (nezávislého na vztažné soustavě) – souvislost s uvažovanou existencí tzv. éteru, existovala by absolutní vztažná soustava spojená s éterem Einstein - 1905: Absolutní vztažná soustava neexistuje, pohyb a klid jsou vždy relativní pojmy! Pohyb a klid těles 1
Pohyb a klid těles 2 Vždy tedy záleží na tom, vůči čemu pohyb či klid uvažujeme (na vztažné soustavě) Každý hmotný bod či těleso je v určité soustavě v klidu (klidová soustava tělesa), v jiných se však pohybuje Příklad: Vůči soustavě spojené s učebnou jsme v klidu, vůči soustavě spojené s auty na Klatovské jsme však v pohybu, stejně tak vůči soustavě spojené se Sluncem (tam dokonce velikou rychlostí)… U většiny případů pohyb a klid vztahujeme k soustavě spojené se Zemí (např. měření rychlosti na silnici apod. je vždy vůči této soustavě!)
Základní pojmy kinematiky HB Trajektorie – křivka, kterou hmotný bod při pohybu opisuje (může to být přímka, ale i kružnice, elipsa, šroubovice, spirála či mnohé další…) Dráha – délka oblouku měřená na trajektorii, kterou hmotný bod urazí za sledovaný časový interval) Podle tvaru trajektorie dělíme pohyby na: • Přímočaré – trajektorií je část přímky • Křivočaré – trajektorií je jiná křivka (zvláště významný je případ kružnice)
Základní pojmy kinematiky HB 2 Poloha HB v dané vztažné soustavě je obecně udána tzv. rádiusvektorem r (spojnice počátku a HB) r(r(t),φ(t)) z r φ r (x(t),y(t),z(t)) x y Pohyb HB v dané vztažné soustavě je poté obecně popsán časovou závislostí rádiusvektoru V pravoúhlé soustavě souřadné lze rádiusvektor vyjádřit klasicky pomocí 3 kartézských souřadnic (v rovině 2), někdy je lepší použít křivočarou soustavu, třeba polární souřadnice v rovině (r – vzdálenost od počátku, φ – úhel) či sférické souřadnice
Základní pojmy kinematiky HB 2 Rychlost (jednotka m*s-1), udává dráhu uraženou za čas. Nutno důsledně rozlišovat průměrnou rychlost v = s/t (skalár, podíl celkové dráhy a celkového času) a rychlost okamžitou v = ∆r/∆t, kde ∆t → 0 (vektor, uvažovaný časový interval je nekonečně malý). Matematicky je okamžitá rychlost derivací rádiusvektoru podle času, píšeme v = dr/dt !! Zrychlení (jednotka m*s-2), udává změnu rychlosti za změnu času. Opět rozlišení průměrného zrychlení a = v/t (skalár, podíl celkové změny rychlosti a celkového času) a okamžitého zrychlení a = ∆v/∆t, kde ∆t → 0 (vektor, uvažovaný časový interval je nekonečně malý). Matematicky je okamžité zrychlení derivací rychlosti podle času, píšeme a = dv/dt a zároveň 2. derivací rádiusvektoru podle času, píšeme a = d2r/dt2
Základní pojmy kinematiky HB 3 Okamžitá rychlost je u obecného pohybu vždy vektorová veličina mající směr tečny k trajektorii!!Pouze u přímočarého pohybu stačí uvažovat pouze jejich velikost (směr je totiž pořád stejný a daný směrem pohybu…) a at v an Okamžité zrychlení je u obecného pohybu vektorová veličina, jíž lze rozložit na složku ve směru tečny k trajektorii (tečné zrychleníat) a ve směru kolmém k tečně (normálové zrychlenían). Vektorově tedy platí a = at + an, pro velikost celkového zrychlení poté a = √at2+an2 (Pythagorova věta)
Základní pojmy kinematiky HB - shrnutí Máme-li zadánu závislost radiusvektoru na čase u zcela obecného pohybu, můžeme pomocí 1. derivace určit závislost rychlosti na čase (a tím i velikost rychlosti v jakémkoliv okamžiku) a pomocí 2. derivace to samé pro zrychlení (tzv. 1. základní úloha kinematiky HB) Máme-li naopak zadánu závislost zrychlení na čase, můžeme pomocí integrálu (opak derivace) určit závislost rychlosti na čase (a tím i velikost rychlosti v jakémkoliv okamžiku) a dalším integrálem to samé pro rádiusvektor (tzv. 2. základní úloha kinematiky HB) • 1) r(t) → v(t) = dr/dt → a(t) = dv/dt = d2r/dt2 • 2) a(t) → v(t) = integrál z a(t)dt → r(t) = integrál z v(t)dt
Základní pojmy kinematiky HB – shrnutí 2 Logická otázka: Jak budu v praxi znát jednu či druhou z uvedených závislostí, bez toho je mi to k ničemu? Odpověď: Většinou je to z řešení složitých pohybových rovnic, to však již kinematika nezkoumá Příklad: Poloha hmotného bodu je dána radiusvektorem, jehož pravoúhlé souřadnice mají následující časovou závislost: r(t) = (3*cos t, 3*sin t, 2). Určete závislosti rychlosti a zrychlení rychlosti na čase a velikost rychlosti a zrychlení. Řešení: v(t) = dr/dt = d(3*cos t, 3*sin t, 2)/dt = (-3*sin t, 3*cos t, 0). a(t) = dv/dt = d(-3*sin t, 3*cos t, 0)/dt = (-3*cos t, -3*sin t, 0). Pro velikost máme (Pythagorova věta) v(t) = √(-3*sin t)2+ (3*cos t)2 +02 = √18, stejně pro zrychlení a(t) = √18
Základní pojmy kinematiky HB – shrnutí 3 Jde tedy vlastně o pohyb, u nějž je velikost rychlosti a zrychlení konstantní. Podrobnějším rozborem lze zjistit, že jde o rovnoměrný pohyb pro kružnici o poloměru 3 v rovině z = 2 Příklad 2: Pohyb hmotného bodu po přímce je popsán závislostí dráhy na čase s(t) = 4*t3+15*t2+8*t+3. Určete časové závislosti rychlosti a zrychlení a rychlost zrychlení v čase t = 3s. Řešení: Jsme v jednom rozměru, nemusíme uvažovat vektory, jde jen o velikosti! v(t) = ds(t)/dt = d(4*t3+15*t2+8*t+3)/dt = 12*t2+30*t+8. a(t)=dv(t)/dt = d(12*t2+30*t+8)/dt = 24*t+30. Pro daný čas t = 3s: v(3)=12*32+30*3+8=206 m*s-1, a(3) = 24*3+30 = 102 m*s-2 Jde o nerovnoměrný pohyb po přímce, velikosti rychlosti i zrychlení se s časem mění!
Kinematika HB – speciální případy Proč je to najednou o tolik těžší než na ZŠ a SŠ?? Protože tam jste uvažovali jen zcela speciální a v praxi téměř neexistující případy – pohyb rovnoměrný přímočarý a pohyb rovnoměrně zrychlený (či zpomalený) přímočarý plus pohyb rovnoměrný či rovnoměrně zrychlený(zpomalený) po kružnici. Derivace a integrály nám umožňují pracovat s zcela obecnými pohyby hmotného bodu, dovolují nám počítat časové závislosti dráhy, rychlosti, zrychlení, ale i určovat trajektorie různých pohybů!
Pohyb rovnoměrný přímočarý Platí pro něj, že a = 0, v = v0 = konst. a s = v0*t. Závislosti jednotlivých veličin na čase můžeme znázornit graficky: v (m*s-1) v0 a (m*s-2) s (m) s =v0*t tgφ = s/t = v0 φ t(s) t(s) t(s) Z obrázků je vidět, že dráhu lze určit v grafu v(t) jako obsah plochy pod křivkou, rychlost v grafu s(t) poté jako směrnici tečny. To platí obecně pro jakýkoliv přímočarý pohyb!
Pohyb rovnoměrně zrychlený přímočarý • Platí pro něj, že a = a0 = konst., v = a*t + v0 (poč. rychlost), s = ½*a*t2 + v0*t + s0 (poč. dráha, většinou nulová) • Závislosti jednotlivých veličin na čase můžeme znázornit graficky: v (m*s-1) s (m) a (m*s-2) tečna v čase t* a0 tgφ = v (t*) s =1/2*a*t2 φ t(s) t(s) t* t(s) Z obrázků je opět vidět, že dráhu lze určit v grafu v(t) jako obsah plochy pod křivkou, rychlost v grafu s(t) poté jako směrnici tečny. Grafem s(t) je parabola
Pohyb nerovnoměrný přímočarý Platí pro něj, že a není konstantní, rychlost i dráha se poté musí určit pomocí integrálů Závislosti jednotlivých veličin na čase mohou vypadat třeba takto: v (m*s-1) v0 s (m) a (m*s-2) tečna v čase t* a0 tgφ = v (t*) φ t(s) t(s) t* t(s) Grafy jsou složité, opět však lze dráhu lze určit v grafu v(t) jako obsah plochy pod křivkou, rychlost v grafu s(t) poté jako směrnici tečny.
Příklad – rovnoměrně zrychlený pohyb Zadání: Těleso se pohybuje rovnoměrně zrychleně s počáteční rychlostí v0 = 3m*s-1 a zrychlením a = 2m*s-2.Určete dráhu uraženou během prvních deseti sekund pohybu a konečnou rychlost. Řešení: Dosazením t = 10 s do vztahů pro rovnoměrně zrychlený pohyb okamžitě dostáváme: v(10) = v0+a*t = 3 + 2*10 = 23 m*s-1 s(10) = ½*a*t2+v0*t+s0 = ½*2*102+3*10+0 = 130 m. Další příklady na speciální typy pohybu přímočarého na cvičení
Pohyb po kružnici U pohybu po kružnici pracujeme místo s dráhou s, rychlostí v a zrychlením a (jako u přímočarého) s jejich úhlovými analogiemi – úhlovou dráhou φ (jednotka radián – rad), úhlovou rychlostíω (rad*s-1) a úhlovým zrychlením ε (rad*s-2) Převod mezi úhlovými veličinami a veličinami původními se provádí vynásobením poloměrem kružnice. Platí tedy: s = φ*r, v = ω*r, at = ε*r (pozor, jen tečné zrychlení!!) Veškeré vztahy uvedené dříve pro přímočarý pohyb a jeho speciální případy zůstávají v platnosti s tím, že veličiny nahradíme jejich úhlovými analogiemi!! např. ω(t) = dφ/dt, ε(t) = dω/dt = d2φ/dt2 ω(t) = integrál z ε(t)dt, φ(t) = integrál z ω(t)dt
Rovnoměrný pohyb po kružnici U rovnoměrného pohybu po kružnici platí (viz analogie s rovnoměrným přímočarým pohybem) vztahy ε = 0, ω(t) = ω0 = konst., φ(t) = ω0*t + φ0 (počáteční úhlová dráha, většinou nula) Grafy ε(t), ω(t), φ(t) jsou zcela stejné jako grafy a(t), v(t) a s(t) pro rovnoměrný přímočarý pohyb, platí i všechna tam uvedená pravidla (obsah plochy pod křivkou, směrnice…)! Dále zavádíme pojmy frekvence (značka f, jednotka Hertz – „Hz“, rozměr s-1) jako počet oběhů za sekundu (platí tedy vztah f = ω0/2*π) a perioda (značka T, jednotka sekunda – „s“) jako doba trvání jednoho oběhu (platí tedy, že T = 1/f) přímočarý po kružnici a = 0, v = v0= konst. ε = 0, ω(t) = ω0 = konst., s = v0*t + s0 φ(t) = ω0*t + φ0
Rovnoměrně zrychlený pohyb po kružnici U rovnoměrného pohybu po kružnici platí (viz analogie s rovnoměrným přímočarým pohybem) vztahy ε = ε0 = konst., ω(t) = ε0*t + ω0 (počáteční úhlová rychlost), φ(t) = ½* ε0*t2 +ω0*t + φ0 (počáteční úhlová dráha, většinou nula) Grafy ε(t), ω(t), φ(t) jsou zcela stejné jako grafy a(t), v(t) a s(t) pro rovnoměrně zrychlený přímočarý pohyb, platí i všechna tam uvedená pravidla (obsah plochy pod křivkou, směrnice…)! přímočarýpo kružnici a = a0 = konst.ε = ε0 = konst. v = a*t + v0 ω(t) = ε0*t + ω0 s = ½*a*t2 + v0*t + s0 φ(t) = ½* ε0*t2 +ω0*t +φ0
Pohyb po kružnici – normálové zrychlení Zatím jsme uvažovali pouze úhlové zrychlení, z něhož po vynásobení poloměrem kružnice máme tečnou složku zrychlení at. Víme však, že existuje i k ní kolmá (normálová) složka an, celkové zrychlení je pak dáno vektorovým součtem obou složek, jeho velikost je pak a = √at2+an2. Pro velikost normálové složky platí vztah an = v2/r =ω2*r, kde r je poloměr kružnice. Vzhledem k tomu, že každou křivku lze v daném bodě nahradit kružnicí (tzv. oskulační kružnice), můžeme normálové zrychlení určit pomocí vzorce an = v2/r i v případě jiného pohybu než po kružnici (r poté značí poloměr oskulační kružnice nebo též tzv. poloměr křivosti dané křivky v daném bodě…)
Shrnutí přednášky • Vědět a na konkrétních příkladech umět aplikovat, že pohyb a klid jsou vždy relativní pojmy a tudíž záleží na tom, vůči jaké soustavě je určujeme • Vědět, že okamžitou rychlost (je to vektor) určujeme jako derivaci rádiusvektoru podle času, okamžité zrychlení (opět vektor) poté jako derivaci okamžité rychlosti podle času. • Vědět, že u křivočarého pohybu existuje tečné a normálové zrychlení, znát jejich směry vzhledem k trajektorii a umět spočítat celkové zrychlení, pokud je zadána hodnota tečného a normálového zrychlení. • Umět z grafu závislosti rychlosti na čase určit uraženou dráhu a z grafu závislosti dráhy na čase určit v daném čase okamžitou rychlost • Znát základní vztahy pro dráhu a rychlost rovnoměrného a rovnoměrně zrychleného pohybu hmotného bodu • Vědět, že uhlová dráha, úhlový rychlost a úhlové zrychlení je analogií dráhy, rychlosti a zrychlení pro posuvný pohyb a umět díky tomu určit vztahy pro rovnoměrný a rovnoměrně zrychlený pohyb po kružnici. • Umět pracovat s veličinami frekvence a perioda pohybu po kružnici, znát jednotky obou veličin a vědět, jak spolu souvisí • Příští přednáška – 12. 11. 2013 • Téma: Dynamika hmotného bodu, Newtonovy zákony, silové interakce • Děkuji vám za pozornost!!