1 / 35

Peso Atomico e Molecolare

Peso Atomico e Molecolare. Peso Atomico La massa mediata delle masse relative di tutti gli isotopi naturali costituenti. Carbonio. 98.89% 12 C 1.11% 13 C. 12 • 0.9889 + 13.0034 • 0.0111 = 12.011. Peso Molecolare

metta
Download Presentation

Peso Atomico e Molecolare

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Peso Atomico e Molecolare Peso Atomico La massa mediata delle masse relative di tutti gli isotopi naturali costituenti Carbonio 98.89% 12C 1.11% 13C 12 • 0.9889 + 13.0034 • 0.0111 = 12.011 Peso Molecolare La somma dei pesi atomici degli elementi che sono contenuti in una molecola della sostanza PM CO2 = 12.011 + 2(15.9994) = 44.0100 PM CuSO4·5H2O = 63.546 + 32.064 + 4(15.9994) + 5[1.0079+2(15.9994)] = 248.9341

  2. Unità Atomiche e MolecolariLa Mole La mole è la quantità di sotanza che contiene un numero di unità chimiche (atomi, molecole, ioni, ... ) pari al numero di atomi contenuti in 12.000 g di 12C NA = 6.022169·1023 La massa in grammi di una mole di qualunque elemento (molecola) è espressa dallo stesso numero che ne esprime il peso atomico (molecolare)

  3. Reazioni e relazioni ponderali

  4. Esempi 1) Quante moli di rame sono contenute in 12.30 g di rame? 2) Quale è la massa media in grammi di un atomo di ossigeno? 3) Quale è la massa di 2.36·10-3 moli di sodio 4) Quanti atomi ci sono in 10.0 g di ossigeno? Quante molecole? 5) Avendo 5.00 g di Li, 5.00 g di Hg e 5.00 g di Cd, quale campione contiene il maggior numero di atomi? 6) Quante moli sono contenute in 18.12 g di solfato di rame pentaidrato? 7) Calcolare la massa di ciascun elemento contenuta in 3.2 g di cloruro di bario. 8) Calcolare la percentuale in peso degli elementi nel solfato di rame pentaidrato. Calcolare la percentuale in peso della sola H2O di idratazione. 1) 1.936·10-1 mol; 2) 2.6567·10-23 g; 3) 5.43·10-2 g; 4) 3.76·1023, 1.88·1023; 5) Li: 4.34·1023; 6) 2.279·10-2; 7) Ba: 2.1 g, Cl: 1.1 g; 8) H: 4.05%, O: 57.83%, S: 12.84%, Cu: 25.28%, H2O: 36.15%

  5. moli di soluto Molalità (m) mol Kg-3 m = chilogrammi di solvente moli di soluto A Molarità (M) mol L-1 [A] = litri di soluzione moli del componente A Frazione molare (c) cA= moli totali di tutti i componenti massa di sostanza Parti per milione (ppm) ppm = massa del campione Concentrazione ChimicaLe Soluzioni Sistema omogeneo che contiene due o più sostanze solventesoluto massa (volume)di soluto x 100 Percentuale in peso (% p/p o v/v) % p/p (v/v) = massa (volume) di soluzione x 106

  6. Unità di Misura delle Concentrazioni Massa percentuale massa di soluto x 100 Percentuale in peso (% p/p) % p/p = massa di soluzione 15 g di solfato di sodio vengono sciolti in 500 g di H2O. Calcolare la percentuale in peso dei componenti la soluzione H2O Na2SO4 Quanti grammi di solfato di rame occorre sciogliere in 500 g di H2O per avere una soluzione al 6.5 % del sale?

  7. Unità di Misura delle Concentrazioni Densità La densità è la massa dell’unità di volume della soluzione Una soluzione acquosa di HBr al 48.5% ha una densità di 1.488 g·cm-3. Calcolare la concentrazione della soluzione espressa in grammi di soluto per dm3 di soluzione. (722 g·dm-3) La densità di una soluzione di acido solforico al 96.4% è 1.835 gcm-3. Calcolare il volume che contiene disciolta una mole dell’acido. (55.5 cm3·mol-1)

  8. moli di soluto A Molarità (M) mol L-1 [A] = litri di soluzione Unità di Misura delle Concentrazioni Molarità Calcolare la concentrazione molare di una soluzione acquosa di cloruro di nichel preparata sciogliendo 3.75 g di sale e portando ad un volume finale di 500 mL. Calcolare la [Ni2+] e [Cl-]. ([NiCl2]=2.89·10-2 M; [Ni2+]=2.89·10-2 M; [Cl-]=5.79·10-2 M ) Calcolare i grammi di idrossido di sodio che occorrono per preparare 1 dm3 di una soluzione 0.100 M della base. (4.00 g) Calcolare i grammi di acido nitrico sono disciolti in 5.00 dm3 di una soluzione 1.55·10-2 M dell’acido. (4.88 g) Calcolare la concentrazione molare di una soluzione di acido nitrico al 69.8%, sapendo che la d=1.42 g·cm-3. (15.7 M) Si calcoli il volume di una soluzione di acido nitrico al 6908% (d=1.42 g·cm-3) e di H2O che bisogna mescolare per preparare 1 dm3 di una soluzione 0.200 M dell’acido. Si considerino i volumi additivi (12.7 cm3)

  9. Composti solubili s > 10 g /L Composti insolubili s < 1 g /L Soluzione INSATURA Soluzione SATURA Solvente + Soluto Le SoluzioniSolubilità e Miscibilità È la quantità massima di sostanza che può sciogliersi in un dato solvente. La solubilità è generalmente espressa in moli/L o in g/L. Quando soluto e solvente sono liquidi, si parla di MISCIBILITÀ

  10. Solvente Covalente Polare o Ionico: CH3OH, H2O, etc. Solvente Covalente Apolare: CHCl3, Idrocarburi, etc. Soluti Covalenti Polari o Ionici: Acidi, Sali, etc. Soluti Covalenti Apolari: Composti organici + + + - - Le Soluzioni Fattori che influenzano la solubilità Il simile scioglie il suo simile Fattori Entropici Fattori Entalpici Perdita ordine molecolare del Soluto e del Solvente Formazione legami intermolecolari Soluto-Solvente Forze Intermolecolari Solvente Forze Intermolecolari Soluto (Energia Reticolare) Calore di Solvatazione Entropia di Solubilizzazione Calore di Solubilizzazione - + DG = DH-TDS Endotermica Esotermica

  11. CO32- OH- S2- NO3- Cl- SO42- NaCl(s) Na+(aq) + Cl-(aq) Pb(NO3)2(s) Pb2+(aq) + 2 NO3-(aq) BaCO3(s) Ba2+(aq) + CO32-(aq) Pb(OH)2(s) Pb2+(aq) + 2 OH-(aq) Le Soluzioni Solubilità degli elettroliti Elettroliti Forti: sono completamente dissociati in H2O Composti solubili s > 0.1 mol/L Composti insolubili s < 0.1 mol/L Quando si indica la concentrazione della soluzione si fa riferimento a Ca Elettroliti Deboli: sono parzialmente dissociati in H2O

  12. Reazioni in soluzione acquosa Quando è possibile prevedere una reazione chimica fra due o più specie ? Le reazioni possono essere: 1 – di precipitazione 2 – acido-base 3 – di metatesi 4 - di ossidoriduzione (redox) fra un ossidante ed un riducente In soluzione acquosa, si verificherà una reazione chimica fra due o più elettroliti se le combinazioni degli ioni che da essi derivano formano: un sale insolubile un elettrolita debole un gas Criterio :

  13. Solubilità dei composti chimici • Sono solubili: • I sali dei metalli alcalini e dello ione ammonio (NH4+). • I nitriti, nitrati, clorati, perclorati ed acetati. • (L'acetato di Ag+ ed il perclorato di K+ sono moderatamente solubili). • Gli alogenuri, con eccezione dei sali di Pb2+, Ag+ ed Hg22+; PbCl2 é debolmente solubile. • I solfati;i solfati di Ca2+ ed Ag+ sono moderatamente solubili;i solfati di Sr2+, Ba2+, Pb2+,ed Hg22+ sono insolubili. • Sono insolubili (Eccetto i sali del precedente punto 1): • I carbonati, cromatie fosfati. • I solfuri; tranne i sali dei metalli alcalini e alcalino-terrosi. • Gli idrossidi sono generalmente insolubili eccetto quelli dei metalli alcalini che sono solubili. Gli idrossidi di Ca2+, Sr2+ e Ba2+ sono moderatamente solubili. • Tutti gli ossidi dei metalli eccetto quelli dei metalli di alcalini e di Ca2+, Sr2+ e Ba2+ sono insolubili. Gli ossidi dei metalli, quando si sciolgono, reagiscono con l'acqua per formare idrossidi, per esempio: • CaO + H2O → Ca2+ + 2OH-

  14. Elettroliti Elettroliti forti: Acidi forti es. HCl, HBr, HI, HNO3, H2SO4, HClO4. Basi forti es. gli idrossidi alcalini ed alcalino terrosi. Sali la maggior parte dei sali inorganici ed organici. Elettroliti deboli La grande maggioranza di acidi e basi inorganici ed organici. Gli alogenuri e i cianuri di metalli pesanti, per es. Pb ed Hg, sono spesso elettroliti deboli Non-elettroliti H2O La grande maggioranza dei composti organici.

  15. Sviluppo di gas CO2 CO32- + 2H+ → H2CO3 → CO2(g) + H2O ▼ Carbonati, bicarbonati H2S S2- + 2H+ → H2S(g) ▼ Solfuri, purché non estremamente insolubili SO2 SO32- + 2H+ → H2SO3 → SO2(g) + H2O ▼ Solfiti, bisolfiti NO, NO2 2NO2- + 2H+ → 2HNO2 → H2O + NO(g) + NO2(g) ▼ ▼ Nitriti colore bruno 3HNO2 → H2O + 2NO(g) + HNO3 (aq) NH3 NH4+ + OH- → NH3(g) + H2O ▼ Sali di ammonio

  16. Gas in soluzione acquosa SOLUBILITÁ IN ACQUA DEI GAS PIÚ COMUNI (Litri di gas/litro di H2O) a 20°C Gas poco solubili: N2 (0.015) H2(0.018) CO (0.023) O2 (0.031) Gas abbastanza solubili CO2 (0.88) Cl2 (2.0) H2S (2.58) Gas molto solubili: SO2 (39.4) HCl (475) NH3 (700)

  17. Reazioni in soluzione acquosa 1) Dissociazione elettrolitica CuCl2(aq) + NaOH(aq) Cu2+ + 2 Cl- + Na+ + OH- 2) Individuazione prodotto insolubile Cu(OH)2 idrossido insolubile Na+, Cl- 3) Individuazione ioni spettatori 4) Bilanciamento di massa e carica Cu2+ + 2 OH- Cu(OH)2

  18. Reazioni in soluzione acquosa 1) Dissociazione elettrolitica NH4NO3(aq) + NaCl(aq) NH4+ + NO3- + Na+ + Cl- 2) Individuazione prodotto insolubile Nessuno ! Le possibile combinazioni (NH4NO3, NH4Cl, NaNO3, NaCl) non corrispondono a composti insolubili, ad elettroliti deboli, non sviluppano gas

  19. Reazioni in soluzione acquosa 1) Dissociazione elettrolitica HCl(aq) + CH3COOK(aq) H+ + Cl- + CH3COO- + K+ 2) Individuazione elettrolita debole CH3COOH K+, Cl- 3) Individuazione ioni spettatori 4) Bilanciamento di massa e carica H+ + CH3COO- CH3COOH

  20. Reazioni in soluzione acquosa 1) Dissociazione elettrolitica HCl(aq) + NaOH(aq) H+ + Cl- + Na+ + OH- 2) Individuazione elettrolita debole H2O Na+, Cl- 3) Individuazione ioni spettatori 4) Bilanciamento di massa e carica H+ + OH- H2O

  21. Reazioni in soluzione acquosa 1) Dissociazione elettrolitica Na2CO3(aq) + HCl(aq) 2 Na+ + CO32- + H+ + Cl- 2) Formazione di un gas H2CO3 CO2 + H2O Na+, Cl- 3) Individuazione ioni spettatori 4) Bilanciamento di massa e carica CO32- + 2 H+ CO2 + H2O

  22. NaCl(s) Na+(aq) + Cl-(aq) Pb(NO3)2(s) Pb2+(aq) + 2 NO3-(aq) Equilibri di precipitazione Solubilità: è la quantità massima di sale che può sciogliersi in una soluzione acquosa. La solubilità è espressa in moli/L. Composti solubili s > 0.1 mol/L Composti insolubili s < 0.1 mol/L BaSO4(s) Ba2+(aq) + SO42-(aq) PbCl2(s) Pb2+(aq) + 2 Cl-(aq)

  23. Equilibri di precipitazione In un sale insolubile il solido e i corrispondenti ioni in soluzione sono in equilibrio tra di loro: PbCl2(s) Pb2+(aq) + 2 Cl-(aq) Kps = [Pb2+] · [Cl-]2 Kps: costante del prodotto di solubilità. Per un dato sistema ha un valore costante a t° = cost (25°C)

  24. Equilibri di precipitazione Esempi: AgBr (s) Ag+(aq) + Br-(aq) Kps = [Ag+] · [Br-] = 5·10-13 Fe(OH)3 (s) Fe3+(aq) + 3 (OH)-(aq) Kps = [Fe3+] · [OH-]3 = 3·10-39 Ca3(PO4)2 (s) 3 Ca2+(aq) + 2 (PO4)3-(aq) Kps = [Ca2+]3 · [(PO4)3-]2 = 1·10-33

  25. x = Kps = 1.34·10-4 Equilibri di precipitazione In una soluzione satura di un sale insolubile, la concentrazione degli ioni all’equilibrio può essere agevolmente calcolata dall’espressione della Kps: Esempio: Calcolare la concentrazione di Pb2+ e di SO42- all’equilibrio, in una soluzione satura di PbSO4, sapendo che Kps = 1.8·10-8. PbSO4(s) Pb2+(aq) + SO42-(aq) Kps = [Pb2+] · [SO42-] = 1.8·10-8 [Pb2+] = [SO42-] = x x2 = Kps = 1.8·10-8

  26. Equilibri di precipitazione In una soluzione satura di un sale insolubile, la concentrazione degli ioni all’equilibrio non è altro che la sua solubilità in acqua: PbSO4(s) Pb2+(aq) + SO42-(aq) [Pb2+] = [SO42-] = Kps = 1.34·10-4 = s Più in generale per calcolare la solubilità di un sale occorre calcolare la concentrazione degli ioni provenienti dal sale, tenendo conto dei rapporti ponderali ovvero della stechiometria della reazione

  27. Kps 3 4 Equilibri di precipitazione Esempio: Calcolare la solubilità in acqua di BaF2, sapendo che Kps = 1.8 ·10-7. Esprimere la solubilità sia in moli/L che in g/L. BaF2(s) Ba2+(aq) + 2 F-(aq) Per ogni mole di BaF2 che si scioglie, si formano 1mole di Ba2+ e due moli di F-: [Ba2+] = s [F-] = 2s Kps = [Ba2+] · [F-]2 = s ·(2s)2 = 1.8·10-7 mol/L 4s3 = Kps s = = 3.6·10-3 Per trovare la solubilità in g/L: s = 3.6·10-3 mol/L · 175.3 g/mol = 0.63 g/L PM BaF2 = 175.3 g/mol

  28. Kps 1.7·10-5 = 4.25·10-2 [Pb2+] = = [Cl-]2 [2·10-2]2 Equilibri di precipitazione Dall’espressione della costante del prodotto di solubilità è possibile calcolare la concentrazione di uno dei due ioni all’equilibrio, nota la concentrazione dell’altro: Esempio: Calcolare la concentrazione di Pb2+ all’equilibrio, sapendo che la concentrazione di Cl- = 2.0·10-2 M PbCl2(s) Pb2+(aq) + 2 Cl-(aq) Kps = [Pb2+] · [Cl-]2 = 1.7·10-5

  29. Equilibri di precipitazione Formazione di un precipitato I valori di Kps possono essere utilizzati per prevedere la formazione di un precipitato. PbCl2(s) Pb2+(aq) + 2 Cl-(aq) Prodotto ionico: P = [Pb2+] · [Cl-]2 • Kps è una costante • P può assumere qualunque valore

  30. Equilibri di precipitazione • P > Kps formazione di un precipitato • P < Kps non si forma precipitato • P = Kps siamo al punto di precipitazione

  31. Equilibri di precipitazione Effetto dello ione comune PbCl2(s) Pb2+(aq) + 2 Cl-(aq) La presenza di uno ione comune diminuisce la solubilità Esempio: Calcolare la solubilità di PbCl2 in acqua e in una soluzione 2.0·10-2 M di KCl.

  32. Equilibri di precipitazione Solubilizzazione dei precipitati Per portare in soluzione il precipitato di un sale insolubile occorre aggiungere un reagente in grado di sottrarre uno o entrambi gli ioni componenti. • Un acido forte per sottrarre anioni basici • Un agente complessante per sottrarre cationi metallici

  33. Equilibri di precipitazione Acido forte H2O H+ Fe(OH)2(s) Fe2+(aq) + 2 OH-(aq) 2H+(aq) + 2OH-(aq) 2H2O Fe(OH)2(s) + 2H+(aq) Fe2+(aq) + 2H2O K = K1·K2 = Kps ·1/(Kw)2 = 5·1011 Kps Fe(OH)2 = 5·10-17

  34. Equilibri di precipitazione Acido forte • Tutti i carbonati • Molti solfuri

  35. Equilibri di precipitazione Formazione di complessi L’ammoniaca e l’idrossido di sodio vengono comunemente usati per sciogliere precipitati contenenti cationi che formano complessi stabili con questi due leganti: AgCl(s) Ag+(aq) + Cl-(aq) Kps AgCl = 1.8 ·10-10 NH3 [Ag(NH3)2]+ Kf = 1.7 ·107 K = K1·K2 = Kps ·Kf= 3.1·10-3

More Related