1 / 14

Analisis Survival

Analisis Survival. Abdul Kudus, Ph.D. E-mail : akudus69@unisba.ac.id Blog : abdulkudus.staff.unisba.ac.id. Fungsi Ketahanan (Survivor). Misalkan waktu ketahanan T mempunyai fungsi distribusi peluang dengan fungsi densitas f ( t ) Fungsi distribusi kumulatif ( cdf ) bagi T , ditulis sbg

miyoko
Download Presentation

Analisis Survival

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Analisis Survival Abdul Kudus, Ph.D. E-mail : akudus69@unisba.ac.id Blog : abdulkudus.staff.unisba.ac.id

  2. FungsiKetahanan (Survivor) • MisalkanwaktuketahananTmempunyaifungsidistribusipeluangdenganfungsidensitasf(t) • Fungsidistribusikumulatif(cdf) bagiT, ditulissbg • menyatakanpeluangwaktuketahananhidupbernilailebihkecildarit • FungsiketahanandariT, • S(t) = P(T ≥ t) = 1 − F(t) • menyatakanpeluangindividubertahanmelebihiwaktut: yakni, S(t) adalahpeluangbhwvariabelacakTmelebihit.

  3. S(t) teoritis • dlmpraktik

  4. FungsiKegagalan (Hazard) • Fungsikegagalanh(t) menyatakanlajukegagalansesaatpadawaktutdengansyaratbhwindividutsbmampubertahaansampait. • P(t ≤T<t+t|T≥t) = P(individu ‘gagal’ dlm interval [t,t+t ] | mampubertahansampait) • Fungsikegagalan ≡ lajukegagalanbersyarat • Peluang per satuanwaktu, laju: 0 sampai ∞

  5. Untuknilaittertentu, fungsikegagalanh(t) mempunyaisifatsbb: • selalutaknegatif, yaknisamaataulebihbesardari nol. • tidakpunyabatasatas.

  6. HubunganS(t) danh(t) • Ambil limit daritmenujunol

  7. FungsiKegagalanKumulatif • Perhatikanbhw • Akibatnya, S(t) = exp[-H(t)], dimana • adalahkegagalankumulatif

  8. BeberapaDistribusiParametrikutkWaktuKetahanan • Exponential() • FungsiDensitas  = 0.5  = 1.0  = 1.5

  9. 1. Weibull(,) (Pal, et al. (2006) • 2. Weibull(,) (Collett, 2003) • kegagalanmeningkatutk > 1 • kegagalanmenurunutk < 1 • HubunganantaraWeibullke-1 danke-2

  10. Statistik Deskriptif

  11. Menyusun Data utk Memahami Analisis

More Related