1 / 62

Cel fizyki poszukiwanie i poznawanie podstawowych praw rządzących zjawiskami przyrody

Cel fizyki poszukiwanie i poznawanie podstawowych praw rządzących zjawiskami przyrody Prawa te muszą być sformułowane w sposób ilościowy, formułuje się je odnosząc się do wyników doświadczeń.

montana
Download Presentation

Cel fizyki poszukiwanie i poznawanie podstawowych praw rządzących zjawiskami przyrody

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cel fizyki poszukiwanie i poznawanie podstawowych praw rządzących zjawiskami przyrody Prawa te muszą być sformułowane w sposób ilościowy, formułuje się je odnosząc się do wyników doświadczeń. Hipotezy - tworzy się celem wytłumaczenia wyników eksperymentu. Pozwalają zaprojektować dalsze eksperymenty i przewidzieć ich wyniki. Hipoteza prawo, jeśli pozwala przewidzieć wyniki bardzo szerokiego zakresu eksperymentów i nie stoi w sprzeczności z żadnym z nich.

  2. Teoria - matematyczne ujęcie pewnego modelu zjawisk, obejmująca wszystkie zjawiska z pewnej dziedziny, np. mechanika klasyczna – daje pełny opis ruchów układów makroskopowych, mechanika kwantowa – opisuje mikroświat atomów i cząsteczek. Teoria opiera się na modelu, np. • punkt materialny • gaz doskonały • bryła sztywna • Model matematyczny – wyidealizowany model zagadnienia fizycznego – założenia upraszczające – np. wahadło matematyczne.

  3. Sprawdzianem każdego poglądu naukowego jest doświadczenie - podstawową czynnością w fizyce jest pomiar. Jednostki podstawowe w układzie SI kilogram – wzorzec 1 kg – walec platynowo–irydowy metr – 1 m – długość równa 1 650 763.73 długości fal (w próżni) promieniowania odpowiadającego przejściu pomiędzy poziomami 2p10 a 5d5 kryptonu sekunda – czas trwania 9 192 631 770 drgań promieniowania emitowanego przez amper – 1 A – natężenie prądu stałego, który przepływając przez dwa równoległe prostoliniowe przewodniki o nieskończonej długości i znikomo małym przekroju, umieszczone w próżni w odległości 1 m, wytwarza między przewodnikami siłę oddziaływania równą 2·10-7 N na każdy metr ich długości.

  4. Kelwin – jednostka temperatury w skali, w której temperatura punktu potrójnego wody jest równa dokładnie 273.16 K. Kandela światłość, którą ma 1/(6·105) m2 powierzchni ciała doskonale czarnego, promieniującego w temperaturze krzepnięcia platyny pod ciśnieniem 1 atmosfery. światłość z jaką świeci w określonym kierunku źródło emitujące promieniowanie monochromatyczne o częstotliwości 5,4·1014 Hz i wydajności energetycznej w tym kierunku równej (1/683) W/sr. Radian– kąt płaski zawarty między dwoma promieniami koła, wycinającymi z okręgu tego koła łuk o długości równej promieniowi. Kąt pełny

  5. Steradian – kąt bryłowy o wierzchołku w środku kuli wycinającym z powierzchni tej kuli pole równe kwadratowi jej promienia. Pełny kąt bryłowy

  6. Długości występujące w fizyce: promień krzywizny Wszechświata – 1027 m odległość Ziemi od Słońca – 1011 m wysokość najwyższego budynku – 102 m długość fali świetlnej – 10-6 m promień atomu wodoru – 10-10 m promień lekkich jąder atomowych – 10-15 m

  7. Czasy spotykane w fizyce: przypuszczalny wiek Wszechświata (1010 lat) – 1018 s okres połowicznego rozpadu uranu 238 – 1015 s średni czas życia człowieka – 109 s okres obiegu Ziemi wokół Słońca – 107 s średni czas życia neutronu – 103 s okres drgań dla najniższego słyszalnego tonu – 10-2 s średni czas życia wzbudzonego atomu – 10-8 s okres drgań atomów w cząsteczkach – 10-12 s

  8. Masy różnych ciał: Nasza Galaktyka – 1041 kg Ziemia – 1024 kg człowiek – 70 kg pyłek kurzu – 10-13 kg proton – 10-27 kg elektron – 10-31 kg foton (spoczynkowa) – 0

  9. Narządy zmysłów dostarczają informacji o znikomej liczbie zjawisk. Oko nie rozróżnia przedmiotów mniejszych od 1/30 mm, mikroskop elektronowy – 10-7 mm Słuch reaguje na dźwięki o natężeniu większym od 10-12 W/m2 w zakresie częstości 20 – 20 000 Hz. Człowiek nie rejestruje działania pól elektrycznych i magnetycznych. Nie reaguje na fale radiowe. Konieczne jest posługiwanie się odpowiednimi przyrządami.

  10. Układy współrzędnych a) układ współrzędnych prostokątnych z P(x,y,z) 0 y x

  11. b) biegunowy układ współrzędnych y P(r, ) x

  12. c) sferyczny układ współrzędnych z •                        , •                                      , •              . P(r,,θ) θ y 0  x

  13. Matematyczny opis zjawisk fizycznych wymaga zdefiniowania różnych wielkości fizycznych. Jeden ze sposobów klasyfikowania wielkości fizycznych polega na wyznaczaniu ilości przy założeniu, że ustalona jest jednostka miary. Wielkości, które przy wyznaczonej jednostce miary są w zupełności określone przez jedną liczbę nazywamy skalarami. Należą do nich np. masa, temperatura, czas, droga, praca. Istnieją wielkości, które nie mogą być wyznaczone jednoznacznie przez ich miarę, ponieważ zależą również od kierunku (przyjęto, że kierunek zawiera i zwrot). Takie wielkości nazywamy wektorami. Są nimi np. przemieszczenie ciała, prędkość, siła. W fizyce spotykamy również wielkości, które nie są ani skalarami ani wektorami. Nazywamy je tensorami (np. moment bezwładności).

  14. Elementy rachunku wektorowego Przestrzeń trójwymiarowa określamy podając trzy wektory, zwane wektorami bazy.Mogą nimi być trzy wzajemnie prostopadłe wektory których długości są równe jedności (wersory) Wektory te w kartezjańskim układzie współrzędnych są zwyczajowo oznaczane jako Dowolny wektor możemy przedstawić jako kombinację liniową . gdzie: odpowiednie składowe wektora

  15. z az ay y ax x

  16. Suma wektorów W kartezjańskim układzie współrzędnych:

  17. (D. Halliday, R. Resnick, J. Walker, Podstawy Fizyki, PWN) suma wektorów jest przemienna

  18. Różnica wektorów (D. Halliday, R. Resnick, J. Walker, Podstawy Fizyki, PWN)

  19. Iloczyn skalarny wektorów: lub przy pomocy składowych wektorów w układzie kartezjańskim jako: Iloczyn skalarny wektorów prostopadłych jest równy zeru.

  20. Długość rzutu wektora a na kierunek wektora b Długość rzutu wektora b na kierunek wektora a

  21. Iloczyn wektorowy: jest wektorem prostopadłym do płaszczyzny utworzonej przez obydwa wektory Długość wektora jest równa polu równoległoboku zbudowanego na wektorach : Iloczyn wektorowy wektorów równoległych jest równy zeru.

  22. a

  23. Zwrot wektora wektor pierwszy w iloczynie wektorowym obracamy o mniejszy kąt w prawo tak by doprowadzić go do pokrycia się z wektoremdrugim w iloczynie wektorowym.Zwrot wektorajest zgodny z kierunkiem ruchu końca śruby prawoskrętnej.

  24. (D. Halliday, R. Resnick, J. Walker, Podstawy Fizyki, PWN)

  25. Składowe wektora w układzie kartezjańskim, możemy wyznaczyć obliczając wyznacznik: .

  26. Elementy analizy matematycznej Funkcje Zmiennay nazywa się zmienną zależną albo funkcjązmiennej x jeśli przyjmuje określone wartości dla każdej wartości zmiennej x w jej pewnym przedziale zmienności. lub

  27. Pochodna funkcji y B(x1,y1) A(xo,yo) ∆y Równanie prostej ∆x x Pochodna funkcji

  28. Pochodna funkcji w danym punkcie jest równa współczynnikowi kierunkowemu stycznej do wykresu funkcji w tym punkcie. Wyrażenie dy = y’dx nazywa się różniczką funkcji y = y(x), dx – jest różniczką argumentu x. Różniczkując pierwsza pochodną po x, otrzymamy drugą pochodną itd……

  29. Podstawowe wzory rachunku różniczkowego c = const 1 2 3 4

  30. 5 6 Pochodna funkcji złożonej

  31. Pochodne funkcji elementarnych

  32. Rachunek całkowy – całka nieoznaczona Całką nieoznaczoną lub funkcją pierwotną funkcji y = f(x) nazywamy taką funkcję F(x), której pochodna jest równa danej funkcji f(x) Całkę nieoznaczoną zapisujemy symbolicznie jako

  33. Całki funkcji elementarnych

  34. Całka oznaczona Funkcja y = f(x) jest ciągła w przedziale <a,b> zmiennej x. a b Całka oznaczona jest równa polu ograniczonemu osią x i krzywą f(x)

  35. Przykład Całka oznaczona w przedziale <-2,3>

  36. y = x 3 Pole trójkąta + -2 - 3 -2

  37. Fizyka Program przedmiotu: 15 godzin wykładu - dr Krystyna Chłędowska 20 godzin ćwiczeń audytoryjnych www.prz.edu.pl Wydział Matematyki i Fizyki Stosowanej Katedra Fizyki pracownicy

  38. Mechanika i budowa maszyn 60 h 2. Kształcenie w zakresie fizyki Treści kształcenia: Dynamika układów punktów materialnych. Elementy mechaniki relatywistycznej. Podstawowe prawa elektrodynamiki i magnetyzmu. Zasady optyki geometrycznej i falowej. Elementy optyki relatywistycznej. Podstawy akustyki. Mechanika kwantowa i budowa materii. Fizyka laserów. Podstawy krystalografii. Metale i półprzewodniki. Efekty kształcenia – umiejętności i kompetencje: pomiaru podstawowych wielkości fizycznych, analizy zjawisk fizycznych i rozwiązywania zagadnień technicznych w oparciu o prawa fizyki.

  39. Literatura • K. Chłędowska, R. Sikora, Wybrane problemy fizyki z rozwiązaniami cz. I, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2008 • R. Sikora, K. Chłędowska, Problemy fizyki z rozwiązaniami cz. II, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2002 • D. Halliday, R. Resnick, J. Walker, Podstawy fizyki , PWN, Warszawa 1999 • J. Massalski, M. Massalska, Fizyka dla inżynierów, WNT Warszawa 2005 • C. Bobrowski, Fizyka – krótki kurs, WNT Warszawa 2003 • J. Orear, Fizyka, WNT Warszawa 1999 • I.W. Sawieliew, Wykłady z fizyki, PWN Warszawa 1994

  40. Zaliczenie przedmiotu: Uzyskanie zaliczenia z ćwiczeń audytoryjnych Egzamin: Część pisemna – zadania + teoria

  41. Dynamika układów punktów materialnych Punkt materialny – ciało obdarzone masą, ale nie posiadające objętości. Ruch postępowy każdego rzeczywistego obiektu można opisać jako ruch punktu materialnego.

  42. Przemieszczenia liniowe wszystkich elementów samochodu są jednakowe

  43. Przemieszczenie liniowe elementów pręta zależy od odległości od osi obrotu

  44. 1. Dane jest ciało o ściśle określonych własnościach 2. Ciało umieszczamy w znanym otoczeniu – potrafimy określić siły, które na niego działają Pytamy: jaki będzie ruch tego ciała?

  45. ? Ziemia MZ >> M, m

More Related