430 likes | 529 Views
SECTIE E NERGIE EN I NDUSTRIE. The crucial integration of power systems; Combining fossil and sustainable energy using fuel cells Kas Hemmes Lunchlezing 21 februari 2006 ; TU Delft. Outline. Introduction Classification of Energy systems MSMP Energy systems
E N D
SECTIE ENERGIE EN INDUSTRIE SECTIE ENERGIE EN INDUSTRIE The crucial integration of power systems; Combining fossil and sustainable energy using fuel cells Kas Hemmes Lunchlezing 21 februari 2006 ; TU Delft
SECTIE ENERGIE EN INDUSTRIE Outline • Introduction • Classification of Energy systems • MSMP Energy systems • (Energy Hubs & Modeling and optimization methodology) • Examples • Conclusions • Acknowledgements
SECTIE ENERGIE EN INDUSTRIE Introduction:Energy System S Y T C T D system boundary Φi,in(x,t) Φj,out(x,t) C Φloss(x,t)
S Y T C T D SECTIE ENERGIE EN INDUSTRIE Introduction:Storage often necessary • Yield & Demand • Y(x,t) D(x,t)
SECTIE ENERGIE EN INDUSTRIE Classification of energy system 1 Linear energy system Co-generation system Tri-generation system 2 3
E-net F 1 R 2 N 3 SECTIE ENERGIE EN INDUSTRIE Linear energy system
SECTIE ENERGIE EN INDUSTRIE Input combinations of Fossil and Renewables F Biomass Co-firing E-net R F Bio-ethanol Bio-diesel mix Transport R
SECTIE ENERGIE EN INDUSTRIE Multisource-multiproduct MSMP-systems a d b Etc. c
c SECTIE ENERGIE EN INDUSTRIE Example : simple CHP energy hub
SECTIE ENERGIE EN INDUSTRIE energy hub
SECTIE ENERGIE EN INDUSTRIE Power Flow Coupling
SECTIE ENERGIE EN INDUSTRIE Relation between coupling matrix C and energy hub L = C. P
SECTIE ENERGIE EN INDUSTRIE Optimization • How much of which input should be consumed in order to meet the load demand in an optimal manner ? • (due to a certain optimality criterion, e.g. energy cost or emissions)
SECTIE ENERGIE EN INDUSTRIE Why new energy systems? What to optimize? • Present systems suffer from “inefficiencies” • Conversion efficiency < 100% • Mismatch between Supply & Demand in time and space • Transport losses • Not 100% eXergy efficient (minimum entropy production) • Not used 100% of the time • Not 100% Renewable/sustainable • Not flexible, not 100% reliable • But also mixing entropy: N2 in Natural Gas; N2 in CO2 off-gas etc. • …and Institutional, Economic…
SECTIE ENERGIE EN INDUSTRIE Integration of Fuel Cells in a Nitrogen - Natural Gas mixing station E - power E - power air O2 Air -SEP IR-FC FC H2 Low T heat heat N2 H2 NG NG/N2 /(H2 )
SECTIE ENERGIE EN INDUSTRIE Example: FC replacing N2/O2 seperation unit in N2-NG mixing station E - power air IR-FC Low-T FC Low T heat N2 H2 NG N2 NG/N2/(H2) The system is producing E-power instead of consuming it !!
90 80 C+O2 = CO2 (DCC) CHx pyro +DCC 70 60 Fuel-cell/turbine hybrid technologies 50 Thermodynamic efficiency, % DHstd Westinghouse tube SOFC 40 Combined cycle Chart source: NETL, Nov. 1999 Conventional Steam plants SECTIE ENERGIE EN INDUSTRIE DOE goal for the 21st century fuel cell (higher efficiencies)
F (CxHy) C Thermal decomposition H2 R (Solar) or Nuclear SECTIE ENERGIE EN INDUSTRIE Precombustion solid-gas separation of Carbon in a MSMP system
Fuel hfc hNernst loss hirr htot C 1.0 1.0 0.8 0.8 H2 0.7 0.8 0.8 0.45 CH4 0.89 0.8 0.8 0.57 SECTIE ENERGIE EN INDUSTRIE Thermodynamic advantages of Direct Carbon Conversion Table 3 Order of magnitude comparison between the electrochemical conversion efficiencies of C, H2 and CH4 at 700 oC (Cooper, J. F. et al 2000)
SECTIE ENERGIE EN INDUSTRIE Electrochemical gasification in a Direct Carbon Fuel Cell • (Solar) Heat can be converted into power with an efficiency higher than the Carnot efficiency! • Self regulating process DS>0 DH<0 2C + O2 ==> 2CO Power C DCFC Syngas Q
90 80 C+O2 = CO2 (DCC) CHx pyro +DCC 70 60 Fuel-cell/turbine hybrid technologies 50 Thermodynamic efficiency, % DHstd Westinghouse tube SOFC 40 Combined cycle Chart source: NETL, Nov. 1999 Conventional Steam plants SECTIE ENERGIE EN INDUSTRIE DOE goal for the 21st century fuel cell (higher efficiencies) C+½ O2=CO
Power C DCFC Syngas Q (solar) SECTIE ENERGIE EN INDUSTRIE A Fuel Cell that produces hydrogen and converts heat into power ? C+½O2 = CO CO + H2O ==> H2+ CO2
SECTIE ENERGIE EN INDUSTRIE Looking for ways to use the full exergetic quality of solid fuel !! • Solid fuels become increasingly more important (security of supply). • Coal because it is cheap and abundant. • Biomass because it is CO2 neutral. • Waste. • Also liquids are ‘closer’ to solids than to gases in terms of their exergy value.
SECTIE ENERGIE EN INDUSTRIE Countries with large potential for Solar and Biomass can become the energy producing countries of the future. Fuel cell technology Solar Biomass
E - power IR-FC CO / H2 NG heat SECTIE ENERGIE EN INDUSTRIE Example of trigeneration: H2 and power co-production using an internal reforming fuel cell.
SECTIE ENERGIE EN INDUSTRIE MCFC - Hot Module
SECTIE ENERGIE EN INDUSTRIE MCFC Hot Module
SECTIE ENERGIE EN INDUSTRIE Co-production • Co-production of hydrogen and power from NG in an Internally reforming fuel cell (IR FC) is worked out by flow sheet calculations on an Internal Reforming Solid Oxide Fuel Cell (IR-SOFC) system. It is shown that the system can operate in a wide range of fuel utilization values from 95% i.e. ‘normal’ fuel cell operation mode up to 60% and lower corresponding to hydrogen production mode.
SECTIE ENERGIE EN INDUSTRIE Internal Reforming - SOFC system flowsheet
SECTIE ENERGIE EN INDUSTRIE Mode 1 – High efficiency mode First we kept the input flow rate of NG constant. The fuel utilization is now decreased by decreasing the current density. • 1 input • (natural gas input is kept constant at 2000 kW) • 3 outputs vs Fuel Utilization • Electric Power • H2 & CO • (Waste) heat Efficiency vs Fuel Utilization
SECTIE ENERGIE EN INDUSTRIE Mode 1 – High efficiency mode
SECTIE ENERGIE EN INDUSTRIE Fuel cell theory and modeling OCV = Open Cell Voltage a = 100 – 220 mV uf = fuel utilisation i = current density r = specific resistance
SECTIE ENERGIE EN INDUSTRIE Conventional Solution for dealing with fluctuating renewable energy sources essentially is a complex storage device in a linear energy system. E - power E - power Storage
SECTIE ENERGIE EN INDUSTRIE Conventional Solution for dealing with fluctuating renewable energy sources E - power E - power Storage O2 FC Electrolyser H2 H2O H2O heat
SECTIE ENERGIE EN INDUSTRIE Example: Integration of a H2 - power co-production FC with fluctuating renewable energy sources. E - power air IR-FC H2 H2 Optional (NG/N2 ) NG N2 heat
E - power E - power IR-FC CO / H2 NG heat SECTIE ENERGIE EN INDUSTRIE Energy hub model of previous example
SECTIE ENERGIE EN INDUSTRIE Remarks on ‘Gasgestookte windenergie’ • No storage of H2 needed. • Instead the storage capacity of NG is used • North sea provides NG and Wind !!
SECTIE ENERGIE EN INDUSTRIE Conclusions • System thinking!! • Identify "inefficiencies" • An integration between Fossil and Renewable is possible and may be crucial in meeting our needs without sacrificing those of future generations. • New definitions of efficiency and green energy in MSMP systems needed
SECTIE ENERGIE EN INDUSTRIE Acknowledgments • TU Delft : Anish Patil, Theo + Nico Woudstra (Cycle Tempo flowsheet calculations)ETH : Martin Geidle(MSMP concept & calculations)