140 likes | 399 Views
GÉOMÉTRIE MOLÉCULAIRE. GÉOMÉTRIE MOLÉCULAIRE. La forme d’une molécule dépendant du montant de doublets liants et de doublets non liants (libres) d’électrons sur sa couche de valence. Doublet liant. Doublet non-liant. GÉOMÉTRIE MOLÉCULAIRE.
E N D
GÉOMÉTRIE MOLÉCULAIRE • La forme d’une molécule dépendant du montant de doublets liants et de doublets non liants (libres) d’électrons sur sa couche de valence. Doublet liant Doublet non-liant
GÉOMÉTRIE MOLÉCULAIRE • Une molécule possède obligatoirement des doublets liants (paires d’électrons qui participent à une liaison chimique) mais parfois aucun doublet non liants (paires d’électrons qui ne participent pas à une liaison chimique).
GÉOMÉTRIE MOLÉCULAIRE • Exemple 1 - La molécule de CO2 possède quatre doublets liants et aucun doublets libres sur son atome central. • Exemple 2 - La molécule d’eau possède deux doublets liants et deux doublets libres sur son atome central.
THEORIE DE LA REPULSION DES PAIRES ELECTRONIQUES DE VALENCE La théorie de la répulsion des paires d’électrons de valence (RPECV) énonce comme principe que les doublets liants et les doublets non liants d’électrons de valence d’un atome se séparent le plus possible les uns des autres pour minimiser les forces de répulsion. Selon cette théorie, les principales géométries moléculaires sont les suivantes: Géométrie moléculaire
THEORIE DE LA REPULSION DES PAIRES ELECTRONIQUES DE VALENCE La théorie de la répulsion des paires d’électrons de valence (RPECV) énonce comme principe que les doublets liants et les doublets non liants d’électrons de valence d’un atome se séparent le plus possible les uns des autres pour minimiser les forces de répulsion. DNL – Doublet non liant DL- Doublet liant Les forces de répulsion entre les doublets se situent comme suit en ordre décroissant : DNL – DNL > DNL – DL > DL – DL Géométrie moléculaire
THEORIE DE LA REPULSION DES PAIRES ELECTRONIQUES DE VALENCE La théorie de la répulsion des paires d’électrons de valence (RPECV) énonce comme principe que les doublets liants et les doublets non liants d’électrons de valence d’un atome se séparent le plus possible les uns des autres pour minimiser les forces de répulsion. Donc, des DNL se repoussent d’avantage que un DNL et un DL ou encore deux DL. Exemple : Chaque molécule ci-dessous possède 4 paires d’électrons autour de l’atome central. Pourtant, les angles entre les atomes sont différents dus aux nombres différents de DNL et DL que possèdent ces molécules. H2O NH3 CH4 HOH = 104,5o HNH = 107,3o HCH = 109,5o Géométrie moléculaire
THEORIE DE LA REPULSION DES PAIRES ELECTRONIQUES DE VALENCE Détermination de la géométrie d’une molécule selon cette méthode: Géométrie de la molécule trigonale pyramidale Structure de Lewis Disposition spatiale des doublets électroniques Dans le cas de composés à liaisons multiples, la liaison multiple est assimilée à une simple liaison : Répulsion entre doublets: liant-liant < liant-non liant < non liant-non liant Géométrie moléculaire
THEORIE DE LA REPULSION DES PAIRES ELECTRONIQUES DE VALENCE • Structure linéaire: • Deux paires électroniques • (les liaisons multiples étant assimilées à une seule paire électronique) entourent l’atome central Géométrie moléculaire
THEORIE DE LA REPULSION DES PAIRES ELECTRONIQUES DE VALENCE • Structure trigonale plane: • Trois paires électroniques • (les liaisons multiples étant assimilées à une seule paire électronique) entourent l’atome central Géométrie moléculaire
THEORIE DE LA REPULSION DES PAIRES ELECTRONIQUES DE VALENCE • Structure tétraèdrique: • Quatre paires électroniques entourent l’atome central Géométrie moléculaire
THEORIE DE LA REPULSION DES PAIRES ELECTRONIQUES DE VALENCE • Figure 4.12 p. 181 • La géométrie de la molécule dépend du nombre de DNL et DL que possède l’atome central. Selon la notation RPECV, la molécule de NH3 est AX3E. Ce qui veut dire que l’atome central N(A) a 3 DL (X) et un DNL (E). En sachant le nombre de DNL et DL, on est capable de prédire la forme moléculaire. Voir le tableau 4.2 du manuel de chimie 12 et faire les exercices p. 185 nos 18, 19 et 20 et p. 186 nos 21 et 22