1.1k likes | 1.36k Views
Statistische Methoden II SS 2008. Vorlesung : Prof. Dr. Michael Schürmann Zeit: Freitag 10.00 - 12.30 (Pause: 11.30 - 11.45) Ort: Hörsaal Makarenkostraße (Kiste). Übungen Gruppe 2: Hermann Haase Di 8.00 - 10.00 SR 222
E N D
Statistische Methoden II SS 2008 Vorlesung: Prof. Dr. Michael Schürmann Zeit: Freitag 10.00 - 12.30 (Pause: 11.30 - 11.45) Ort: Hörsaal Makarenkostraße (Kiste) Übungen Gruppe 2: Hermann Haase Di 8.00 - 10.00 SR 222 Gruppe 1: Hermann HaaseDi 10.00 - 12.00 SR 222 Gruppe 5: Svenja Schützhold Di 12.00 - 14.00 SR 222 Gruppe 7: Sebastian GrapenthinDi 14:00 - 16:00 HS 11 Gruppe 8:SvenjaSchützhold Di 16:00 -18:00 SR 5 Gruppe 4: Sabine Storandt Mi 8.00 - 10.00 SR 222 Gruppe 3: - fällt weg -Mi 10.00 - 12.00 SR 222 Gruppe 6: Sebastian GrapenthinMi 12.00 - 14.00 SR 3 SR 222 : Fleischmannstraße 6 SR 3 + 5 : Loefflerstraße 70 HS 11 : Domstraße 9a (Hist. Institut)
Statistische Methoden I WS 2007/2008 Einleitung: Wie schätzt man die Zahl der Fische in einem See? Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales Datenmaterial 2.1. Der Häufigkeitsbegriff 2.2. Lage- und Streuungsparameter 2.3. Konzentrationsmaße (Lorenz-Kurve) 3. Mehrdimensionales Datenmaterial 3.1. Korrelations- und Regressionsrechnung 3.2. Indexzahlen 3.3. Saisonbereinigung
II. Wahrscheinlichkeitstheorie 1. Laplacesche Wahrscheinlicheitsräume 1.1. Kombinatorische Formeln 1.2. Berechnung von Laplace-Wahrschein- lichkeiten 2. Allgemeine Wahrscheinlichkeitsräume 2.1. Der diskrete Fall 2.2. Der stetige Fall 2.3. Unabhängigkeit und bedingte Wahrscheinlichkeit 3. Zufallsvariablen 3.1. Grundbegriffe 3.2. Erwartungswert und Varianz 3.3. Binomial- und Poisson-Verteilung 3.4. Die Normalverteilung und der Zentrale Grenzwertsatz
4. Markov-Ketten 4.1. Übergangsmatrizen 4.2. Grenzverhalten irreduzibler Markov-Ketten 4.3. Gewinnwahrscheinlichkeiten 4.4. Beispiel „Ruin der Spieler“ 4.5. Anwendungen
III. Induktive Statistik 1. Schätztheorie 1.1. Grundbegriffe, Stichproben 1.2. Maximum-Likelihood-Schätzer 1.3. Erwartungstreue Schätzer 1.4. Konfidenzintervalle 1.5. Spezialfall Binomial-Verteilung 2. Spezialfall Normalverteilung 2.1. Student- und Chi-Quadrat-Verteilung 2.2. Konfidenzintervalle
3. Tests 3.1. Grundbegriffe 3.2. Tests einfacher Hypothesen (Neyman-Pearson-Test) 3.3. Tests zusammengesetzter Hypothesen 3.4. Vergleich zweier unabhängiger Stichproben 3.5. Chi-Quadrat-Tests 3.6. Kolmogorov-Smirnov-Test 3.7. Einfache Varianzanalyse
Statistische Methoden I WS 2007/2008 Literatur 1) G. Bamberg, F. Baur: Statistik. Oldenbourg 2) G. Bamberg, F. Baur: Statistik-Arbeitsbuch. Oldenbourg 3) L. Fahrmeir, R. Künstler, I. Pigeot, G. Tutz: Statistik. Springer 4) J. Schira: Statistische Methoden der VWL und BWL. Pearson Education 5) H. Haase: Stochastik für Betriebswirte. Shaker 6) J. Hartung: Statistik. Oldenbourg 7) R. Schlittgen: Einführung in die Statistik. Oldenbourg 8) A. Quatember: Statistik ohne Angst vor Formeln. Pearson Studium 9) H.-D. Radke: Statistik mit Excel. Markt + Technik
Übersicht I Konfidenzintervalle für den Erwartungswert
Übersicht II Konfidenzintervalle für die Varianz
Fall Normalverteilung Test für den Erwartungswert Varianz bekannt
Fall Normalverteilung Test für den Erwartungswert Varianz unbekannt
Übersicht Chi-Quadrat-Tests
Faustregeln Chi-Quadrat-Tests Test auf Anpassung Test auf Unabhängigkeit Test auf Homogenität
Weitere nützliche Übersichten in den Powerpoint-Präsentationen der Vorlesung! http://www.math-inf.uni-greifswald.de/algebra/
Zentrale Themen (praktischer Teil) Darstellung von Daten (Stem-Leaf-Diagramm, Box-Plot) Absolute und relative Häufigkeiten Empirische Verteilungsfunktion Lageparameter (arithmetisches Mittel, Median, Quantile, Quartile) Streuungsparameter (Varianz, emp. Varianz, Streuung) Lorenz-Kurve, Gini-Koeffizient Kovarianz Korrelationskoeffizient nach Bravais-Pearson Regressionsrechnung (lineare Regression, Regressionsgerade, Bestimmtheitsmaß) Peisindex nach Laspeyres und nach Paasche
Beschreibende Statistik (= Deskriptive Statistik) Beschreibung von Datenmaterial 1. Semester Wahrscheinlich- keitstheorie 1. Semester Schließenden Statistik (= Induktive Statistik) Analyse von Datenmaterial, Hypothesen, Prognosen 2.Semester
Häufigkeiten Gegeben ist eine Datenliste (Urliste) (hier z. B. die Klausur-Noten von 50 Studenten) 3 3 4 5 2 1 3 3 4 3 2 3 4 4 4 5 2 1 3 3 3 3 4 4 4 5 4 3 4 3 2 3 3 2 4 3 2 1 5 4 4 4 5 4 5 1 1 3 3 3 Hier die geordneten Daten 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5
H(1) = 5 H(2) = 6 H(3) = 18 H(4) = 15 H(5) = 6 Absolute Häufigkeiten h(1) = 0.1 h(2) = 0.12 h(3) = 0.36 h(4) = 0.3 h(5) = 0.12 Relative Häufigkeiten F(1) = 0.1 F(2) = 0.22 F(3) = 0.58 F(4) = 0.88 F(5) = 1 Kumulierte relative Häufigkeiten
Fakultäten EMAU Berechnung der Winkel für ein Kreisdiagramm T: Theologische RSW: Rechts- und Staatswiss. Med: Medizinische Phil: Philosophische MathNat: Mathematisch-Naturwiss. K: Studienkolleg, ... h(T) = 0.011 h(RSW) = 0.22 h(Med) = 0.164 h(Phil) = 0.309 h(MathNat) = 0.273 h(K) = 0.022 3.96 Grad 79.2 Grad 59.04 Grad 111.24 Grad 98.28 Grad 7.92 Grad
Empirische Verteilungsfunktion „Zähne“
Stem-Leaf-Diagramm Bei diesem Diagramm werden meist (siehe aber Aufgabe 3) nur die beiden führenden Ziffern berücksichtigt. Die erste Ziffer wird links von einer senkrecht gezogenen Linie eingetragen. Damit hat man den Stamm. Die zweiten Ziffern - die Blätter - werden rechts davon notiert, und zwar zeilenweise aufsteigend geordnet. Dabei muss jeder Wert des Datensatzes durch eine zweite Ziffer (ggf. Null!) repräsentiert werden. Kaltmieten
Charakterisierung von Merkmalen Unterscheidung zwischen qualitativen quantitativen Merkmalen quantitative: Merkmale unterscheiden sich nach der Größe qualitative: Merkmale unterscheiden sich nach der Art Unterscheidung nach der zugrundeliegenden Werteskala Nominal- Ordinal- metrische Skala
Nominal: keine Rangordnung Ordinal: Rangordnung, aber Zwischenwerte nicht interpretierbar metrisch: Rangordnung, Werte zwischen 2 Werten erlauben eine Interpretation Unterscheidung nach diskreten stetigen Merkmalen diskret: Menge der Werte abzählbar (evtl. abzählbar unendlich) stetig: Menge der Werte kontinuierlich, (z.B. reelle Zahlen oder ein Intervall reeller Zahlen)
Arithmetisches Mittel Merkmal Datensatz
Median Merkmal Geordneter Datensatz n ungerade: Wert, der in der Mitte steht n gerade: arithmetisches Mittel der beiden Werte, die in der Mitte stehen
Boxplot Ober-, Untergrenze der „Box“: oberes, unteres Quartil „dicker Strich“ in der Box: Median Ausreißer nach oben: Werte > oberes Quartil + 1.5 Quartilsabstand Ausreißer nach unten: Werte < unteres Quartil - 1.5 Quartilsabstand Jeder Ausreißer wird mit einem Symbol gesondert einge- tragen. Antennen: größter und kleinster Wert in der Datenliste, der kein Ausreißer ist