530 likes | 1.6k Views
Strömungstechnik II Planung des Semesters. Frank Kameier Raum E5.40, Tel. 4351-9721 frank.kameier@fh-duesseldorf.de. Vorlesung 1 Einführung und „Was ist ein Ventilator?“ Praktikum 1: Ähnlichkeitstheorie (Energieersparnis und 1-D Stromfadenberechnung mit Excel)
E N D
Strömungstechnik II Planung des Semesters Frank KameierRaum E5.40, Tel. 4351-9721 frank.kameier@fh-duesseldorf.de • Vorlesung 1 Einführung und „Was ist ein Ventilator?“ • Praktikum 1: Ähnlichkeitstheorie (Energieersparnis und 1-D Stromfadenberechnung mit Excel) • Vorlesung 2 Volumenstrommessung • Vorlesung 3 Grundlagen Strömungsmechanik • Vorlesung 4 Strömungsablösung • Vorlesung 5 Kavitation • Vorlesung 6 Tensorrechnung/Navier-Stokes Gleichung • Praktikum 2: Pumpenkennlinie und Kavitation • Vorlesung 7 Navier-Stokes Gleichung • Vorlesung 8 Windenergieanlagen • Praktikum 3: CFD • Vorlesung 9 Strömungsmaschinen • Vorlesung 10 Sichtbarmachung • Praktikum 4: Radialverdichter • Vorlesung 11 Grenzschichtströmung • Vorlesung 12 Instationöre Aerodynamik in Strömungsmaschinen • Praktikum: Rücksprache • Vorlesung 13 Wiederholung • Vorlesung 14 Prüfungsvorbereitung
1. Vorlesung Strömungstechnik II PEU Motivation – Anwendung von Strömungstechnik in der Praxis •Strömungsmaschinen - Turbinen - Pumpen - Verdichter - Ventilatoren - Gasturbinen / Flugtriebwerke • Strömungsmechanik - Luftfahrt - KFZ Aerodynamik - Messtechnik (Gas- und Wasserverbrauch) • Strömungsakustik - Musikinstrumente
1. Vorlesung Strömungstechnik II PEU Motivation – Anwendung von Strömungstechnik in der Praxis •Wo finden Sie Anwendungen der Strömungstechnik? • Welcher theoretische Background ist zum Verständnis notwendig? • Welche Bücher eignen sich zum Lernen?
Dimensionsbetrachtung -Vergleich der Einheiten- Massenerhaltung /Kontinuitäts-Gl. Mechanische Energieerhaltung (aus Impulserhaltung) Bernoulli-Gleichung Wiederholung – Wiederholung - Wieder
Flettner Rotor – Magnus Effekt Buckau - Baujahr 1924 Alcyone - Baujahr 1980 Quelle: http://de.wikipedia.org/wiki/Flettner-Rotor
Flettner Rotor – Magnus Effekt • Enercon E-Ship - Konzept - Bau bis 2010: Frachtschiff für Windkraftanlagen mit Flettner-Antrieb Mbuli - Baujahr 2007 http://www.skysails.info/index.php Quelle: http://www.hyc86.de/proa.htm
E-Ship 1 (Enercon) 4 Flettner-Rotoren mit 27 m Höhe und 4 m Durchmesser Angestrebt ist eine Kraftstoffersparnis von 30–40 % bei einer Fahrt von 16 Knoten (8,2 m/s) http://de.wikipedia.org/wiki/E-Ship_1
Beim Kite Gen werden Kunststoffseile auf zwei Spulen immer wieder auf- und abgespult und treiben so einen ringförmigen elektromagenetischen Generator an. … die Stromerzeugung erfolgt am Boden“ In 800 Metern Höhe herrschen Windgeschwindigkeiten von durchschnittlich 7,2 Metern pro Sekunde und ermöglichen so Stromleistungen von 205 Watt je Quadratmeter http://www.windkraftkonstruktion.vogel.de/allgemein/articles/236395/
http://www.aweconsortium.org/public/downloads/resources/archer_caldeira.pdfhttp://www.aweconsortium.org/public/downloads/resources/archer_caldeira.pdf
Fahrzeuginnengeräusche – Grundlagenuntersuchungen für die BMW Group - Kameier, Horvat, Wagner, Ullrich, ATZ, Juni 2009
Wie sieht die Zukunft aus? aus: www.qmtmag.com März 2008
Prüfung und Prüfungsfragen schriftliche Prüfung am Semesterende: Geschwindigkeitsdreiecke, Berechnung von Strömungen, 1-D oder 3-D jeweils mit Reibung (geschlossene Gleichungssysteme, Benennung der Unbekannten, Einheit einzelner Terme), eigener Schwerpunkt gemäß Fragenkatalog, Anwendungen und Erklärung der Praktika Strömungstechnik I und II http://ifs.mv.fh-duesseldorf.de/pruefung/index.html und http://ifs.mv.fh-duesseldorf.de/Vorlesung/bachelor_PP_PEU/Stroemungstechnik_II/pruefungsfragen260510.doc mündliche Prüfung ab 5. September 2013, Termin 1 x pro Monat – Fragen und Aufbau der Prüfung wie bei der Klausur Wichtigste Literatur zur Vorlesung
Literatur Schade, Kunz, Paschereit, Kameier: Strömungslehre, de Gruyter, 2007 Fox, R.W., McDonald, A.T.: Introduction to Fluid Mechanics, 4th Edition, New York, 1992 Grundmann, R., Schönholtz, F., Eidam, H., Rahn, B., Grundlagen der Ventilatorentechnik(Ventilatoren-Fibel), http://www.tlt-turbo.com/dateien/194.pdf Rolls-Royce plc.: The jet engine, Derby, 1996. www.windpower.dk Kameier: Vorlesungsskript Strömungsmaschinen, FH Düsseldorf 1999, http://mv.fh-duesseldorf.de/d_pers/Kameier_Frank/d_lehre/a_stroemungstechnik/Skript_stroemaschinen.pdf Kameier, Reinartz: Vorlesungsskript Strömungsakustik, FH Düsseldorf 2001 http://mv.fh-duesseldorf.de/d_pers/Kameier_Frank/d_lehre/b_stroemungsakustik/skript_stroeakustik.pdf
Was versteht man unter einem Ventilator? Ventilatoren – Vorbereitung des 1. Praktikumstermin Was versteht man unter einem Ventilator? axial radial diagonal Ventilatorenfibel, Turbo-Lufttechnik, Grundmann/Schönholtz; Fotos:Internet
Was versteht man unter einem Ventilator? Turbo-machine / Blower / Industrial Fan rotorstator inletnozzle impeller rotor blade centrifugalfan axial fan volute Ventilatorenfibel, Turbo-Lufttechnik, Grundmann/Schönholtz; Fotos:Internet
Was versteht man unter einem Ventilator? Wann nennt man eine Strömungsmaschine Ventilator? Druckerhöhung < 30000 Pa
Was versteht man unter einem Ventilator? statischer Druck – Totaldruck – Gesamtdruck (für inkompressible Medien)
Was versteht man unter einem Ventilator? Welche Rolle spielt die Kompressibilität der Luft? Druckerhöhung < 30000 Pa Ventilatoren ideale Gasgleichung
Was versteht man unter einem Ventilator? Temperaturerhöhung in Folge einer Druckänderung (kompressible Strömung, Ventilator) Faustformel: pro 1000 Pa Druckerhöhung ergibt sich 1K Temperaturerhöhung isentrope_temperaturerhoehung160403.xls
Was versteht man unter einem Ventilator? Kompressible Strömungen aus den Isentropenbeziehungen,vgl. Schade/Kunz/Paschereit/Kameier (2007) kompressibel_inkompressibel081102_lösung.xls
Was versteht man unter einem Ventilator? Kompressible Strömung – Näherung mit mittlerer Dichte (hier: Staubsaugergebläse) Y=
Was versteht man unter einem Ventilator? Wann ist ein Ventilator effizient? GültignurfürRadialventilatormitrückwärtsgekrümmtenSchaufeln (efficiency grade 61 )! ErPCOMMISSION REGULATION (EU): implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for fans driven by motors with an electric input power between 125 W and 500 kW, No 327/2011, 30 March 2011
Was versteht man unter einem Ventilator? Wann ist ein Ventilator besonders effizient? 1.) Die Strömung muss den Schaufeln des Rotors folgen. 2.) Die Umlenkungzwischenrotierendem und raumfestem System muss optimal sein: Rotor und Stator (Laufrad und Gehäuse) müssen so nah wie möglichaneinandergrenzen! Diese Abstände müssen klein sein! Nachteil: Ventilator wird laut!
Was versteht man unter einem Ventilator? Wie ermittelt man die notwendige Antriebsleistung? (hier mit Proportionalitätenzur Drehzahl) Volumenstrom (auch qv abgekürzt) Druckdifferenz(auch ptotabgekürzt) Leistung (qv * ptot / Wirkungsgrad)
VDI 2081 Geräuscherzeugung und Lärmminderung in Raumlufttechnischen Anlagen Was versteht man unter einem Ventilator? Wie ermittelt man die „Akustik“ eines Ventilators?
Was versteht man unter einem Ventilator? VDI 2081 Geräuscherzeugung und Lärmminderung in Raumlufttechnischen Anlagen Schallleistungspegel=Schalldruckpegel + durchschallte Fläche (A0=1m2)
Lüfterkennlinie • Wirkungsgrad • Schallpegel Im optimalen Betriebspunkt sind der Wirkungsgrad maximal der Schallpegel minimal • V Δp Kennlinie optimaler Betriebspunkt η Wirkungsgrad Lw Schalldruckpegel
Beispiel: Lüfterkennlinie• Wirkungsgrad • Schallpegel Kann man einen leiseren Ventilator einbauen? Energieversorgungsblock - Bahn
Beispiel: Energieversorgungsblock - Austrittsströmung Austrittsströmung durch Gitter - Volumenstrombestimmung
Beispiel: Energieversorgungsblock - Eintrittströmung Energieversorgungsblock - Bahn
Beispiel: Was muss man tun, um die Schallemission zu reduzieren? verbauter Ventilator - K3G 355-AY40 www.ebmppst.com pfa=600 Pa, ptot=623 Pa, qV=2900m3/h (Auslegung) pfa =Druckerhöhung „frei ausblasend“
Messverfahren für Strömungsmaschinen – frei ausblasend Definition „frei ausblasend“ - für einen saugseitigen Prüfstand - Da theoretisch für c2 gilt c2=0 wird ein pfreiausblasend definiert: p1 p2 saugseitiger Kammerprüfstand gemäß DIN 24163 mit p1=pb-p1 Die Geschwindigkeiten sind gemäß der Kontinuitätsgleichung aus dem Volumenstrom zu bestimmen!
Messung des Volumenstrom – Rückrechnung der Druckdifferenz 17,5 % geforderter Volumenstrom wird nicht erreicht
Druckverlust im System muss reduziert werden! verbauter Ventilator - K3G 355-AY40 www.ebmppst.com Ist: ptot=680 Pa, qV=2300m3/h Soll: qV=3000m3/h, d.h. ptot=600 Pa,
Effizienzklasse - Lüfter EuP-Richtlinie (Energy-usingProducts Directive 2005/32/EG) ErP-Richtlinie (Energy-relatedProductDirective 2009/125/EG) http://www.elektror.de/ErP-Richtlinie.969.0.html#10903
Kennlinie Axialventilator Mit verstellbaren Schaufeln Quelle: Ventilatorenfibel, Turbo-Lufttechnik, Grundmann/Schönholtz/Eidam/Rahn, www.tlt-turbo.com/dateien/194.pdf
Was versteht man unter einem Ventilator? Wie viel Kenntnisse der Strömungsmechanik und Akustik benötigt man, um das alles zu verstehen? • eindimensionale versus mehrdimensionale Strömungen • Reibungseinflüsse • laminare und turbulente Grenzschichten oder Rohrströmungen • instationäre Strömungen und Akustik