360 likes | 579 Views
DOUBLE-GATE DEVICES AND ANALYSIS. 2004. 6. 22 발표자 : 이주용 2004-21599. OUTLINE. DG-HEMT / VMT Introduction Material growth and device fabrication DC and microwave characteristics Conclusion. BUT : SHORT CHANNEL EFFECT LIMITATION. VERTICAL SCALING LIMITATION. DOUBLE GATE HEMT.
E N D
DOUBLE-GATE DEVICES AND ANALYSIS 2004. 6. 22 발표자 : 이주용 2004-21599
OUTLINE DG-HEMT / VMT • Introduction • Material growth and device fabrication • DC and microwave characteristics • Conclusion
BUT : SHORT CHANNEL EFFECT LIMITATION VERTICAL SCALING LIMITATION DOUBLE GATE HEMT IMPROVEMENT OF HEMT’s PERFORMANCE: • REDUCTION OF GATE LENGTH: • (state of the art: Ft=562GHz , Fmax=330GHz for Lg=25nm) PARTICULARLY FOR Fmax
BUT : SHORT CHANNEL EFFECT LIMITATION VERTICAL SCALING LIMITATION INTRODUCTION IMPROVEMENT OF HEMT’s PERFORMANCE: • REDUCTION OF GATE LENGTH: • (state of the art: Ft=562GHz , Fmax=330GHz for Lg=25nm) PARTICULARLY FOR Fmax gate 2 drain source ALTERNATIVE: ACTIVE LAYER DOUBLE-GATE HEMT’s (DG-HEMT) ON TRANSFERRED SUBSTRATE gate 1 BCB host substrate
source gate 2 drain ACTIVE LAYER gate 1 BCB host substrate (GaAs) DOUBLE-GATE HEMT’s (DG-HEMT) ON TRANSFERRED SUBSTRATE No buffer layer (reduction of output conductance: Gd)
source gate 2 drain ACTIVE LAYER gate 1 BCB host substrate (GaAs) DOUBLE-GATE HEMT’s (DG-HEMT) ON TRANSFERRED SUBSTRATE No buffer layer (reduction of output conductance: Gd) Two gate (improvement of transconductance: Gm) (reduction of gate resistance: Rg) (higher intrinsic capacitances: Cgs, Cgd)
source gate 2 drain ACTIVE LAYER gate 1 BCB host substrate (GaAs) DOUBLE-GATE HEMT’s (DG-HEMT) ON TRANSFERRED SUBSTRATE No buffer layer (reduction of output conductance: Gd) Two gate (improvement of transconductance: Gm) (reduction of gate resistance: Rg) (higher intrinsic capacitances: Cgs, Cgd) Higher 2DEG density in the channel (Reduction of the source and drain resistances: Rs, Rd)
source gate 2 drain ACTIVE LAYER gate 1 BCB host substrate (GaAs) IMPROVEMENT OF THE MAXIMUM OSCILLATION FREQUENCY (Fmax) higher unloaded voltage gain (Gm/Gd) Lower parasitic resistances DOUBLE-GATE HEMT’s (DG-HEMT) ON TRANSFERRED SUBSTRATE No buffer layer (reduction of output conductance: Gd) Two gate (improvement of transconductance: Gm) (reduction of gate resistance: Rg) (higher intrinsic capacitances: Cgs, Cgd) Higher 2DEG density in the channel (Reduction of the source and drain resistances: Rs, Rd)
d d 12 12 - - 2 2 Si Si - - - - doped doped (5.10 (5.10 cm cm ) ) d d 12 12 - - 2 2 Si Si - - - - doped doped (5.10 (5.10 cm cm ) ) MATERIAL GROWTH 18 18 - - 3 3 InGaAs InGaAs 100 Å Nd Nd cm cm =5.10 cap layer InAlAs InAlAs 120 Å 12 schottky ß ß InAlAs InAlAs 50 Å spacer 100 Å InGaAs channel InGaAs 100 Å spacer InAlAs InAlAs 50 Å ß ß InAlAs InAlAs 120 Å schottky 18 18 - - 3 3 InGaAs InGaAs 100 Å Nd Nd =5.10 cm cm Cap layer InAlAs InAlAs 100 Å etch etch - - stop layers InGaAs InGaAs 2000 Å InP substrate
d d 12 12 - - 2 2 Si Si - - - - doped doped (5.10 (5.10 cm cm ) ) d d 12 12 - - 2 2 Si Si - - - - doped doped (5.10 (5.10 cm cm ) ) MATERIAL GROWTH 18 18 - - 3 3 InGaAs InGaAs 100 Å Nd Nd cm cm =5.10 cap layer InAlAs InAlAs 120 Å 12 schottky ß ß InAlAs InAlAs 50 Å spacer 100 Å InGaAs channel InGaAs 100 Å spacer InAlAs InAlAs 50 Å ß ß InAlAs InAlAs 120 Å schottky 18 18 - - 3 3 InGaAs InGaAs 100 Å Nd Nd =5.10 cm cm Cap layer InAlAs InAlAs 100 Å etch etch - - stop layers InGaAs InGaAs 2000 Å InP substrate
d d 12 12 - - 2 2 Si Si - - - - doped doped (5.10 (5.10 cm cm ) ) d d 12 12 - - 2 2 Si Si - - - - doped doped (5.10 (5.10 cm cm ) ) InAlAs InAlAs 100 Å InGaAs InGaAs 2000 Å InP substrate MATERIAL GROWTH 18 18 - - 3 3 InGaAs InGaAs 100 Å Nd Nd cm cm =5.10 cap layer InAlAs InAlAs 120 Å 12 schottky ß ß InAlAs InAlAs 50 Å spacer ACTIVE LAYER 100 Å InGaAs channel InGaAs 100 Å spacer InAlAs InAlAs 50 Å ß ß InAlAs InAlAs 120 Å schottky 18 18 - - 3 3 InGaAs InGaAs 100 Å Nd Nd =5.10 cm cm Cap layer etch etch - - stop layers
d d 12 12 - - 2 2 Si Si - - - - doped doped (5.10 (5.10 cm cm ) ) d d 12 12 - - 2 2 Si Si - - - - doped doped (5.10 (5.10 cm cm ) ) InAlAs InAlAs 100 Å InGaAs InGaAs 2000 Å InP substrate MATERIAL GROWTH 18 18 - - 3 3 InGaAs InGaAs 100 Å Nd Nd cm cm =5.10 cap layer InAlAs InAlAs 12 120 Å schottky ß ß InAlAs InAlAs 50 Å spacer ACTIVE LAYER 100 Å InGaAs channel InGaAs 100 Å spacer InAlAs InAlAs 50 Å ß ß InAlAs InAlAs 120 Å schottky 18 18 - - 3 3 InGaAs InGaAs 100 Å Nd Nd =5.10 cm cm Cap layer InAlAs InAlAs 100 Å etch etch - - stop layers InGaAs InGaAs 2000 Å InP substrate
d d 12 12 - - 2 2 Si Si - - - - doped doped (5.10 (5.10 cm cm ) ) d d 12 12 - - 2 2 Si Si - - - - doped doped (5.10 (5.10 cm cm ) ) InAlAs InAlAs 100 Å InGaAs InGaAs 2000 Å InP substrate MATERIAL GROWTH 18 18 - - 3 3 InGaAs InGaAs 100 Å Nd Nd cm cm =5.10 cap layer InAlAs InAlAs 120 Å 12 1st HEMT schottky ß ß InAlAs InAlAs 50 Å spacer ACTIVE LAYER 100 Å InGaAs channel InGaAs 100 Å spacer InAlAs InAlAs 50 Å ß ß 2nd HEMT InAlAs InAlAs 120 Å schottky 18 18 - - 3 3 InGaAs InGaAs 100 Å Nd Nd =5.10 cm cm Cap layer InAlAs InAlAs 100 Å etch etch - - stop layers InGaAs InGaAs 2000 Å InP substrate
d d 12 12 - - 2 2 Si Si - - - - doped doped (5.10 (5.10 cm cm ) ) d d 12 12 - - 2 2 Si Si - - - - doped doped (5.10 (5.10 cm cm ) ) InAlAs InAlAs 100 Å InGaAs InGaAs 2000 Å R (active layer) = 130 Ω InP substrate MATERIAL GROWTH 18 18 - - 3 3 InGaAs InGaAs 100 Å Nd Nd cm cm =5.10 cap layer InAlAs InAlAs 120 Å 12 1st HEMT schottky ß ß InAlAs InAlAs 50 Å spacer ACTIVE LAYER 100 Å InGaAs channel InGaAs 100 Å spacer InAlAs InAlAs 50 Å ß ß 2nd HEMT InAlAs InAlAs 120 Å schottky 18 18 - - 3 3 InGaAs InGaAs 100 Å Nd Nd =5.10 cm cm Cap layer InAlAs InAlAs 100 Å etch etch - - stop layers InGaAs InGaAs 2000 Å InP substrate
CLASSIC HEMT PROCESS (1/4) • Mesa isolation. • Ni/Ge/Au/Ni/Au Ohmic contact. • Bonding pads. (Ti/Au/Ti) • First T-gate process: selective recess (Succinic Acid) Ohmic Contact Bonding Pad gate 1 Active Layer InAlAs etch-stop layer InGaAs etch-stop layer InP Substrate
BONDING PROCESS (2/4) InP Substrate • BCB depositing on both active substrate and on GaAs host substrate. • Bonding. InGaAs etch-stop layer InAlAs etch-stop layer Active Layer gate 1 BCB GaAs host Substrate
ETCHING PROCESS (3/4) • Etching InP Substrate by hydrochloric solution. • Etching InGaAs etch-stop layer by Succinic Acid solution. • Etching InAlAs etch-stop layer by H3PO4/H2O2/H2O solution. Active Layer gate 1 BCB GaAs host Substrate
SECOND GATE PROCESS (4/4) Bonding Pad Ohmic Contact gate 2 • Second T-gate process: selective recess (Succinic Acid) Active Layer gate 1 BCB GaAs host Substrate
gate 2 Ohmic contact Active layer gate 1 SEM photograph of a double-gate HEMT Bonding Pad gate 2 Active Layer gate 1 BCB Ohmic Contact GaAs host Substrate
DC AND MICROWAVE CHARACTERISTICS
Idmax = 500 mA/mm VP = -0.2 V Gmext = 2650 mS/mm I(V) CHARACTERISTICS W =2x50µm Lg1 = 0.1µm Lg2 = 0.28µm Vgmax = 0.2V Vgstep = -0.05V VGATE 1 =VGATE 2 • No Kink Effect • Good Pinch-Off
MICROWAVE CHARACTERISTICS W =2x50µm Lg1 = 0.1µm Lg2 = 0.28µm Vds = 0.7 V Vgs = 0.1 V
Gm Gm = 87 = 8 Gd Gd INTRINSIC PARAMETERS GmINT GdINT DG-HEMT Gm = 3140 mS/mm Gd = 36 mS/mm HEMT Gm = 1650 mS/mm Gd = 194 mS/mm
Vgt s D Vgb INTRODUCTION VMT?? • Two channels with differing velocities • Drain current =>controlled by modulating carrier velocity in source-drain channel Fast top channel Slow bottom channel Two channel gate Two gates work in tandem => can maintain total channel population
BUT : limited by source-drain transit time top and back gate capacitance should be equal CHARACTERISTICS Two channel of differing velocity Opportunity for higher speed than C-HEMT HEMT-like Noise Useful in ADCs and AMP Rapid switching time
0<t<tswitch Id=HIGH Vgt ”HIGH” Vgt ”LOW” Vgt ”LOW” s s s D D D Vgb ”LOW” Vgb ”HIGH” Vgb ”HIGH” t=0 Id=HIGH t=0 Id=LOW
+ + + ----- ----- VMT CONDUCTION BAND + + + ----- ----- AlGaAs GaAs AlGaAs AlGaAs GaAs AlGaAs ( Biased to off ) ( Biased to on )
n-GaAs 50 Å n-AlGaAs 600 Å 200 Å i-AlGaAs i-GaAs 450 Å i-AlGaAs (graded) 40 Å i-GaAs 300 Å n-GaAs 140 Å 800 Å i-AlGaAs p-GaAs 2um Semi insulating GaAs substrate Material growth and device fabrication Top side processing only 600℃ 2 DEG Channel isolation and preventing defect Separate high and low channel Low mobility channel (Donor ion and As defect) 550℃ P+ back gate 600℃
EXPERIMENT (1) Topand bottom channel concentration VMT top channel concentration Top Lg=40nm HEMT channel concentration Sheet carrier concentration
EXPERIMENT (2) I-V characteristic on state Vgt=-0.85V Vgb=-1.06V off state Vgt=-2.20V Vgb=0V
EXPERIMENT (3) Ft=15GHz Fmax=100~600GHz Cbottom=KcCtop
CONCLUSION • 0.1µm/0.28µm InAlAs/InGaAs DG-HEMTs: • highextrinsic transconductance = 2650mS/mm • fT = 110GHz fMAX = 200GHz • high unloaded voltage gain (gm/gd = 87) • Velocity Modulation Transistor: • easy fabrication process • low fTbutfMAX = 100~600GHz • faster switching time
REFERENCE [1] Y. YAMASHITA et al. "Pseudomorphic In0.52Al0.48As/In0.7Ga0.3As HEMTs with an ultrahigh ft of 562GHz" IEEE Electron Device Letters, vol.23, n°10, October 2002, pp.573-575. [2] A. ENDOH et al. "Fabrication technology and device performance of sub-50nm gate InP based HEMTs", Proceeding of IPRM2001, pp.448-451. [3] G.K. CELLER et al. "Frontiers of silicon-on-insulator", Journal of Applied Physics, vol.93, n°9, pp.4955-4978, 2003. [4] M.J.W. RODWELL et al, "Submicron Scaling of HBTs", IEEE trans. on elect.devices,vol.48,n°11,pp.2606-2624,2001. [5] S. B0LLAERT et al, "0.12 μm gate length In0.52Al0.48As/In0.53Ga0.47As HEMTs on transferred substrate", Electron Device Letters, vol.23, n°2, pp.73-75, 2002. [6]Fabrication and operation of a velocity modulation transistor Webb, K.J.; Cohen, E.B.; Melloch, M.R.; Electron Devices, IEEE Transactions on , Volume: 48 , Issue: 12 , Dec. 2001 [7]Analysis of microwave characteristics of a double-channel FET employing the velocity-modulation transistor concept Maezawa, K.; Mizutani, T.;Electron Devices, IEEE Transactions on , Volume: 39 , Issue: 11 , Nov 1992 [8]H.Sakaki," velocity-modulation transistor(VMT)-A new field effect transistor concept." Japan.J Appl.Phys vol.21 [9]K.Maezawa, T.Mizutani, and S.Yamada " GaAs/AlAs double-channel structure for velocity modulation transistor."to el published in Japan 1992