1 / 56

HiRadMat Window Design report v2.0

HiRadMat Window Design report v2.0. Specifications v2.0. Interface between machine vacuum and Atmospheric pressure 10 - 8 mbar / P atm Protective atmosphere !!! Diameter 60 mm (Updated) Thickness 5 mm (Updated) Resist to a proton beam size on the window : 1 s = 0.5 mm.

rayya
Download Presentation

HiRadMat Window Design report v2.0

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HiRadMat WindowDesign report v2.0 Michael MONTEIL- 16 March 2010

  2. Specifications v2.0 • Interface between machine vacuum and Atmospheric pressure 10-8 mbar / Patm • Protective atmosphere !!! • Diameter 60 mm (Updated) • Thickness 5 mm (Updated) • Resist to a proton beam size on the window : 1s = 0.5 mm “Beam Size at the TT66 Vacuum Window”, C. Hessler, 26.02.2010 Michael MONTEIL- 16 March 2010

  3. Window geometry – C-C option • Carbon/Carbon composite: 1501 G from SGL • Cylindrical window • Diameter f 80 mm (Updated) • Aperture f 60 mm(Updated) • Thickness: 0.5 cm (Updated) • Aperture (flange internal diameter): f 60 mm(Updated) Michael MONTEIL- 16 March 2010

  4. Solutions #1 for C-C tightness problem:Differential vacuum (V1.0) • 1 Window C-C • Pumping speed needed: 8.4x109 l/s … • 2 Windows C-C with differential pumping • Pumping speed needed: 8.4x103 l/s … • 3 Windows C-C with differential pumping • Pumping speed needed: 8.4x101 l/s OK Michael MONTEIL- 16 March 2010

  5. Solutions #1 for C-C tightness problem:Differential vacuum (New values V2.0) • 1 Window C-C • Pumping speed needed: 2.3x108 l/s … • 2 Windows C-C with differential pumping • Pumping speed needed: 8.94x102 l/s OK ! • 3 Windows C-C with differential pumping • Pumping speed needed: 13 l/s Too low ?! Michael MONTEIL- 16 March 2010

  6. Solutions #1 • What about radiations in this area ? • Possible maintenance needed on the roots pump… • Protective atmosphere • Decreasing pressure in Vacuumside with serial pumps Michael MONTEIL- 16 March 2010

  7. Reference • P2 : Roots pump • 100 –> 1500 m3/h • 10-3 -> 10 Bar • P3 : Ion pump • 400 l/s Michael MONTEIL- 16 March 2010

  8. Solutions #2 for C-C tightness problem: Add a Graphite foil (v1.0) Solution #3 : Tight steel“ring” with a C-C plate (v1.0) Michael MONTEIL- 16 March 2010

  9. Solution #4 : Beryllium • Metal -> Tight !! No differential pumping • Simple window assembly • Thin thickness • Toxicity • Price Michael MONTEIL- 16 March 2010

  10. Solution #5 : Be + C-C • Solution #4 but the pressure load is supported by a C-C plate • Simple window assembly • Thin thickness (no differential pumping…) • Be cannot pollute vacuum unless C-C fail • Tight • Price… but compare to intermediate Vac. Pumps price ? Michael MONTEIL- 16 March 2010

  11. Solutions - Sum-up • #1: C-C (Differential pumping) • Protective atm (Nitrogen ?) • Radiations? • #2: C-C + Graphite foil (useless now) • #3: Tight steel “ring” with a C-C plate • #4: Beryllium • Safety problem • #5: C-C + Beryllium Michael MONTEIL- 16 March 2010

  12. ANSYS Study - Solutions #1stresses and deflection - C-C under DP = 1.4atm • Linear circular fixed support • 2 planes of symmetry • Geometry • Diameter f 80 mm • Thickness: 5 mm • Aperture: f 60 mm • Pressure 1.4 bar Michael MONTEIL- 16 March 2010

  13. ANSYS Study - Solutions #1stresses and deflection - C-C under DP = 1.4atm • Orthotropic properties : 18 plies [0°/90°…] • Smooth and continuous temperature distribution • Through-thickness energy deposition • Coefficient of Thermal Expansion varying with temperature and directions Michael MONTEIL- 16 March 2010

  14. C-C - Pressure load - Deflection 7.4 μm Michael MONTEIL- 16 March 2010

  15. C-C - Pressure load – Von-Mises 5.9 Mpa Michael MONTEIL- 16 March 2010

  16. C-C - Pressure load – Tsaï-Wu Michael MONTEIL- 16 March 2010

  17. C-C - Thermal load ANSYS input =FLUKA output • C-C | 1s = 0.5 mm | 1.7e11 p+ | 288 bunches • Axisymmetrical radial temperature field Radial T (°C) T (°C) R (cm) Z (cm) Depth Michael MONTEIL- 16 March 2010

  18. C-C - Pressure + Thermal load – Deflection 10.6 μm Michael MONTEIL- 16 March 2010

  19. C-C - Pressure + Thermal load – Von-Mises 31 Mpa Michael MONTEIL- 16 March 2010

  20. C-C - Pressure + Thermal load – Tsaï-Wu Michael MONTEIL- 16 March 2010

  21. ANSYS Study - Solutions #4stresses and deflection - Be under DP = 1.4atm • Linear circular fixed support • 2 planes of symmetry • Geometry • Diameter f 80 mm • Thickness: 0.254 mm • Aperture: f 60 mm • Pressure 1.4 bar Michael MONTEIL- 16 March 2010

  22. ANSYS Study - Solutions #4stresses and deflection - Be under DP = 1.4atm • Smooth and continuous temperature distribution • Through-thickness energy deposition • Coefficient of Thermal Expansion varying with temperature • Be: • Poisson’s ratio = 0.1 • High Re = 275 Mpa • High Rm = 551 MPa Michael MONTEIL- 16 March 2010

  23. Be - Pressure load - Deflection 8.1 mm Michael MONTEIL- 16 March 2010

  24. Be - Pressure load – Von-Mises 319 Mpa Michael MONTEIL- 16 March 2010

  25. Be - Pressure load – Safety factor Ult. Strength 1.7 Michael MONTEIL- 16 March 2010

  26. Be - Thermal load ANSYS input =FLUKA output • Be | 1s = 0. 5 mm | 1.7e11 p+ | 288 bunches • Axisymmetrical radial temperature field T (°C) T (°C) Z (cm) Z (cm) Radial Be Michael MONTEIL- 16 March 2010

  27. Be - Pressure + Thermal load – Deflection 8 mm Michael MONTEIL- 16 March 2010

  28. Be - Pressure + Thermal load – Von-Mises 315 Mpa Michael MONTEIL- 16 March 2010

  29. Be - Pressure + Thermal load – Safety factor Ult. Strength 1.7 Michael MONTEIL- 16 March 2010

  30. ANSYS Study - Solutions #5stresses and deflection - C-C+Be under DP = 1.4atm • 2 Studies • C-C (See Solution #4) • Pressure load • Pressure + Temperature loads • Be (Following slides) • Flattered on a C-C plate (Fixed support) and apply pressure load on the other side • Flattered on a C-C plate (Fixed support) and apply pressure load on the other side + Temperature load • 2 planes of symmetry • Geometry • Diameter f 80 mm • Thickness • C-C: 5 mm • Be: 0.254 mm • Aperture: f 60 mm • Pressure 1.4 bar Michael MONTEIL- 16 March 2010

  31. ANSYS Study - Solutions #5stresses and deflection - C-C+Be under DP = 1.4atm • Smooth and continuous temperature distribution • Through-thickness energy deposition • Coefficient of Thermal Expansion varying with temperature Michael MONTEIL- 16 March 2010

  32. Be (flatter on C-C) - Pressure load – Deformation Michael MONTEIL- 16 March 2010

  33. Be (flatter on C-C) - Pressure load – Von-Mises Michael MONTEIL- 16 March 2010

  34. Thermal load ANSYS input =FLUKA output • C-C + Be | 1s = 0.5 mm | 1.7e11 p+ | 288 bunches • Axisymmetrical radial temperature field Radial C-C T (°C) T (°C) Z (cm) Z (cm) Radial Be Depth C-C Michael MONTEIL- 16 March 2010

  35. Be (flatter on C-C) - Pressure + Thermal load – Deflection x 2.6e+002 Michael MONTEIL- 16 March 2010

  36. Be (flatter on C-C) - Pressure + Thermal load – Von-Mises Michael MONTEIL- 16 March 2010

  37. Be (flatter on C-C) - Pressure + Thermal load – Safety factor Ult. Strength Michael MONTEIL- 16 March 2010

  38. To do : • Rough mechanical design • Solution #1 C-C with differential pumping • Maybe coating • 15 cm length between upstream and downstream sides • Solution #5 C-C + Be • Order quotes of Be • Same design that window in TI8, TI2, TT41 (Design by Kurt Weiss, Luca Bruno and Jose Miguel Jimenez) but replacing the Ti foil by a Be foil • Nickel-coating to prevent oxidation on Be ? • 15 cm length between upstream and downstream sides Michael MONTEIL- 16 March 2010

  39. Michael MONTEIL- 16 March 2010

  40. Back up slides Michael MONTEIL- 16 March 2010

  41. C-C 1.4 bar diameter 146 mm (v1.0) Michael MONTEIL- 16 March 2010

  42. Pressure load - Deflection Michael MONTEIL- 16 March 2010

  43. Pressure load – Von-Mises Michael MONTEIL- 16 March 2010

  44. Pressure load – Tsaï-Wu Michael MONTEIL- 16 March 2010

  45. Thermal load ANSYS input =FLUKA output • C-C | 1s = 0.25 mm | 1.7e11 p+ • Axisymmetrical radial temperature field Radial T (°C) T (°C) R (cm) Z (cm) Depth Michael MONTEIL- 16 March 2010

  46. Pressure + Thermal load – Deflection Michael MONTEIL- 16 March 2010

  47. Pressure + Thermal load – Von-Mises Michael MONTEIL- 16 March 2010

  48. Pressure + Thermal load – Tsaï-Wu Michael MONTEIL- 16 March 2010

  49. Be Only Pressure 1 bar instead of 1.4 bar Michael MONTEIL- 16 March 2010

  50. Pressure load - Deflection Michael MONTEIL- 16 March 2010

More Related