560 likes | 656 Views
HiRadMat Window Design report v2.0. Specifications v2.0. Interface between machine vacuum and Atmospheric pressure 10 - 8 mbar / P atm Protective atmosphere !!! Diameter 60 mm (Updated) Thickness 5 mm (Updated) Resist to a proton beam size on the window : 1 s = 0.5 mm.
E N D
HiRadMat WindowDesign report v2.0 Michael MONTEIL- 16 March 2010
Specifications v2.0 • Interface between machine vacuum and Atmospheric pressure 10-8 mbar / Patm • Protective atmosphere !!! • Diameter 60 mm (Updated) • Thickness 5 mm (Updated) • Resist to a proton beam size on the window : 1s = 0.5 mm “Beam Size at the TT66 Vacuum Window”, C. Hessler, 26.02.2010 Michael MONTEIL- 16 March 2010
Window geometry – C-C option • Carbon/Carbon composite: 1501 G from SGL • Cylindrical window • Diameter f 80 mm (Updated) • Aperture f 60 mm(Updated) • Thickness: 0.5 cm (Updated) • Aperture (flange internal diameter): f 60 mm(Updated) Michael MONTEIL- 16 March 2010
Solutions #1 for C-C tightness problem:Differential vacuum (V1.0) • 1 Window C-C • Pumping speed needed: 8.4x109 l/s … • 2 Windows C-C with differential pumping • Pumping speed needed: 8.4x103 l/s … • 3 Windows C-C with differential pumping • Pumping speed needed: 8.4x101 l/s OK Michael MONTEIL- 16 March 2010
Solutions #1 for C-C tightness problem:Differential vacuum (New values V2.0) • 1 Window C-C • Pumping speed needed: 2.3x108 l/s … • 2 Windows C-C with differential pumping • Pumping speed needed: 8.94x102 l/s OK ! • 3 Windows C-C with differential pumping • Pumping speed needed: 13 l/s Too low ?! Michael MONTEIL- 16 March 2010
Solutions #1 • What about radiations in this area ? • Possible maintenance needed on the roots pump… • Protective atmosphere • Decreasing pressure in Vacuumside with serial pumps Michael MONTEIL- 16 March 2010
Reference • P2 : Roots pump • 100 –> 1500 m3/h • 10-3 -> 10 Bar • P3 : Ion pump • 400 l/s Michael MONTEIL- 16 March 2010
Solutions #2 for C-C tightness problem: Add a Graphite foil (v1.0) Solution #3 : Tight steel“ring” with a C-C plate (v1.0) Michael MONTEIL- 16 March 2010
Solution #4 : Beryllium • Metal -> Tight !! No differential pumping • Simple window assembly • Thin thickness • Toxicity • Price Michael MONTEIL- 16 March 2010
Solution #5 : Be + C-C • Solution #4 but the pressure load is supported by a C-C plate • Simple window assembly • Thin thickness (no differential pumping…) • Be cannot pollute vacuum unless C-C fail • Tight • Price… but compare to intermediate Vac. Pumps price ? Michael MONTEIL- 16 March 2010
Solutions - Sum-up • #1: C-C (Differential pumping) • Protective atm (Nitrogen ?) • Radiations? • #2: C-C + Graphite foil (useless now) • #3: Tight steel “ring” with a C-C plate • #4: Beryllium • Safety problem • #5: C-C + Beryllium Michael MONTEIL- 16 March 2010
ANSYS Study - Solutions #1stresses and deflection - C-C under DP = 1.4atm • Linear circular fixed support • 2 planes of symmetry • Geometry • Diameter f 80 mm • Thickness: 5 mm • Aperture: f 60 mm • Pressure 1.4 bar Michael MONTEIL- 16 March 2010
ANSYS Study - Solutions #1stresses and deflection - C-C under DP = 1.4atm • Orthotropic properties : 18 plies [0°/90°…] • Smooth and continuous temperature distribution • Through-thickness energy deposition • Coefficient of Thermal Expansion varying with temperature and directions Michael MONTEIL- 16 March 2010
C-C - Pressure load - Deflection 7.4 μm Michael MONTEIL- 16 March 2010
C-C - Pressure load – Von-Mises 5.9 Mpa Michael MONTEIL- 16 March 2010
C-C - Pressure load – Tsaï-Wu Michael MONTEIL- 16 March 2010
C-C - Thermal load ANSYS input =FLUKA output • C-C | 1s = 0.5 mm | 1.7e11 p+ | 288 bunches • Axisymmetrical radial temperature field Radial T (°C) T (°C) R (cm) Z (cm) Depth Michael MONTEIL- 16 March 2010
C-C - Pressure + Thermal load – Deflection 10.6 μm Michael MONTEIL- 16 March 2010
C-C - Pressure + Thermal load – Von-Mises 31 Mpa Michael MONTEIL- 16 March 2010
C-C - Pressure + Thermal load – Tsaï-Wu Michael MONTEIL- 16 March 2010
ANSYS Study - Solutions #4stresses and deflection - Be under DP = 1.4atm • Linear circular fixed support • 2 planes of symmetry • Geometry • Diameter f 80 mm • Thickness: 0.254 mm • Aperture: f 60 mm • Pressure 1.4 bar Michael MONTEIL- 16 March 2010
ANSYS Study - Solutions #4stresses and deflection - Be under DP = 1.4atm • Smooth and continuous temperature distribution • Through-thickness energy deposition • Coefficient of Thermal Expansion varying with temperature • Be: • Poisson’s ratio = 0.1 • High Re = 275 Mpa • High Rm = 551 MPa Michael MONTEIL- 16 March 2010
Be - Pressure load - Deflection 8.1 mm Michael MONTEIL- 16 March 2010
Be - Pressure load – Von-Mises 319 Mpa Michael MONTEIL- 16 March 2010
Be - Pressure load – Safety factor Ult. Strength 1.7 Michael MONTEIL- 16 March 2010
Be - Thermal load ANSYS input =FLUKA output • Be | 1s = 0. 5 mm | 1.7e11 p+ | 288 bunches • Axisymmetrical radial temperature field T (°C) T (°C) Z (cm) Z (cm) Radial Be Michael MONTEIL- 16 March 2010
Be - Pressure + Thermal load – Deflection 8 mm Michael MONTEIL- 16 March 2010
Be - Pressure + Thermal load – Von-Mises 315 Mpa Michael MONTEIL- 16 March 2010
Be - Pressure + Thermal load – Safety factor Ult. Strength 1.7 Michael MONTEIL- 16 March 2010
ANSYS Study - Solutions #5stresses and deflection - C-C+Be under DP = 1.4atm • 2 Studies • C-C (See Solution #4) • Pressure load • Pressure + Temperature loads • Be (Following slides) • Flattered on a C-C plate (Fixed support) and apply pressure load on the other side • Flattered on a C-C plate (Fixed support) and apply pressure load on the other side + Temperature load • 2 planes of symmetry • Geometry • Diameter f 80 mm • Thickness • C-C: 5 mm • Be: 0.254 mm • Aperture: f 60 mm • Pressure 1.4 bar Michael MONTEIL- 16 March 2010
ANSYS Study - Solutions #5stresses and deflection - C-C+Be under DP = 1.4atm • Smooth and continuous temperature distribution • Through-thickness energy deposition • Coefficient of Thermal Expansion varying with temperature Michael MONTEIL- 16 March 2010
Be (flatter on C-C) - Pressure load – Deformation Michael MONTEIL- 16 March 2010
Be (flatter on C-C) - Pressure load – Von-Mises Michael MONTEIL- 16 March 2010
Thermal load ANSYS input =FLUKA output • C-C + Be | 1s = 0.5 mm | 1.7e11 p+ | 288 bunches • Axisymmetrical radial temperature field Radial C-C T (°C) T (°C) Z (cm) Z (cm) Radial Be Depth C-C Michael MONTEIL- 16 March 2010
Be (flatter on C-C) - Pressure + Thermal load – Deflection x 2.6e+002 Michael MONTEIL- 16 March 2010
Be (flatter on C-C) - Pressure + Thermal load – Von-Mises Michael MONTEIL- 16 March 2010
Be (flatter on C-C) - Pressure + Thermal load – Safety factor Ult. Strength Michael MONTEIL- 16 March 2010
To do : • Rough mechanical design • Solution #1 C-C with differential pumping • Maybe coating • 15 cm length between upstream and downstream sides • Solution #5 C-C + Be • Order quotes of Be • Same design that window in TI8, TI2, TT41 (Design by Kurt Weiss, Luca Bruno and Jose Miguel Jimenez) but replacing the Ti foil by a Be foil • Nickel-coating to prevent oxidation on Be ? • 15 cm length between upstream and downstream sides Michael MONTEIL- 16 March 2010
Back up slides Michael MONTEIL- 16 March 2010
C-C 1.4 bar diameter 146 mm (v1.0) Michael MONTEIL- 16 March 2010
Pressure load - Deflection Michael MONTEIL- 16 March 2010
Pressure load – Von-Mises Michael MONTEIL- 16 March 2010
Pressure load – Tsaï-Wu Michael MONTEIL- 16 March 2010
Thermal load ANSYS input =FLUKA output • C-C | 1s = 0.25 mm | 1.7e11 p+ • Axisymmetrical radial temperature field Radial T (°C) T (°C) R (cm) Z (cm) Depth Michael MONTEIL- 16 March 2010
Pressure + Thermal load – Deflection Michael MONTEIL- 16 March 2010
Pressure + Thermal load – Von-Mises Michael MONTEIL- 16 March 2010
Pressure + Thermal load – Tsaï-Wu Michael MONTEIL- 16 March 2010
Be Only Pressure 1 bar instead of 1.4 bar Michael MONTEIL- 16 March 2010
Pressure load - Deflection Michael MONTEIL- 16 March 2010