1 / 21

Határfelületek termodinamikai tulajdonságai, határfelületi jelenségek

Határfelületek termodinamikai tulajdonságai, határfelületi jelenségek. Fázishatárok: Folyadék-gőz, folyadék-folyadék, szilárd-gáz, szilárd-folyadék (a fázisokat alkotó szpécieszek nem elegyednek, de a fázis felületi és tömbfázisbeli molekulái, ionja folytonosan cserélődnek: dinamikus egyensúly)

Download Presentation

Határfelületek termodinamikai tulajdonságai, határfelületi jelenségek

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Határfelületek termodinamikai tulajdonságai, határfelületi jelenségek Fázishatárok: Folyadék-gőz, folyadék-folyadék, szilárd-gáz, szilárd-folyadék (a fázisokat alkotó szpécieszek nem elegyednek, de a fázis felületi és tömbfázisbeli molekulái, ionja folytonosan cserélődnek: dinamikus egyensúly) Határfelület: kolloid méretű diszkontinuitás, háromdimenziós térrész, fizikai tulajdonságok jelentős megváltozása (pl. sűrűség, törésmutató) Jelentőség: Határfelületi (adhéziós, nedvesedési, adszorpciós) jelenségek értelmezése, kolloid diszperziók stabilitása.

  2. Folyadék-gáz határfelület 1. Felületi feszültség:Dupré-féle kísérlet A felületi feszültség mint erő (definíció 1): T áll. Mechanikai egyensúly: mg = -F F erő a felület síkjában hat és Csak l-től függ! F = γ2l 1. definíció: A felület érintősíkjában ható összehúzóerő (mN/m) egységnyi hosszú szakaszra merőlegesen. γ= F /2l

  3. A felületi feszültség mint energia (definíció 2): Legyen mg > F (infinitezimálisan nagyobb) Elmozdulás x (reverzibilis) Munkavégzés Fx (izoterm) Új felület 2(lx) Egységnyi felület létrehozásához szükséges munka (mJ/m2): Fx/2lx = F/2l = γ izoterm, reverzibilis körülmények között: azaz a felületi feszültség felületi szabadenergia! Nem a felület teljes energiája: hőcserét nem megengedve a felület növelésekor, az lehűl. (1) és (2) alapján megadott felületi feszültség számértékben megegyezik tiszta folyadékokra.

  4. A felületi feszültség eredete A felületi szpécieszek körül nem szimmetrikus az intermolekuláris kölcsönhatási burok. A szpécieszek felületre juttatása a felület növelésekor munkát igényel. A felületi feszültség értékhatárai: 1-1000 mJ/m2 Benzol (20 oC) 28,9 mN/m Hélium (-269,6 oC) 0,16 mN/m Víz (20 oC) 72,75 mN/m NaCl (803 oC) 114,0 mN/m Hg (20 oC) 476,0 mN/m Au (1100 oC) 1130 mN/m Korreláció az anyag kohéziójával!

  5. 2. A felületi feszültség hőmérsékletfüggése Tiszta folyadékokra érvényes

  6. 3. Görbült folyadék-fluidum határfelületek: következmények a) Kapilláris nyomás Kialakulása: szabad folyadék fázisok megjelenésekor és nem elegyedő kondenzált fázisokkal való érintkezéskor Pc = Pbelső – Pkülső A nyomás a konkáv (homorú) oldalon nagyobb (szappanbuborék).

  7. Hogyan függ a görbültségtől? Görbületi sugár (r), főgörbületi sugarak (r1 és r2) Gömb: Pc = 2γ / r (- r) (+r)

  8. Otthoni tanulmányozásra Kapilláris paradoxon Mi történik és miért? Miért paradoxon?

  9. b) Kapilláris emelkedés (süllyedés) Emelkedés: nedvesítő folyadék (pl. víz és üveg) esetén Süllyedés: nem nedvesítő esetben (pl. Hg és üveg) Jelentőség: felszívódás és szárítás (pórusokban történő folyadéktranszport: talajok vízháztartása és kőolaj kihozatal) (tökéletes nedvesedés) Részleges nedvesedés esetén ( , peremszög): : kapilláris belső sugara : egyensúlyi emelkedési magasság : a folyadék sűrűsége (levegőét elhanyagoljuk)

  10. Hogyan helyettesíthető a folyadékfelszín görbületi sugara a kapilláris belső sugarával (rk) Otthoni tanulmányozásra

  11. c) Görbült felszínű folyadékok gőznyomása Domború folyadékfelszín felett nagyobb, homorú felett kisebb az egyensúlyi (telített) gőznyomás (Pr) mint a megfelelő sík felszín felett levő (P∞). Következmények: -izoterm átdesztillálás (szilárd-folyadék analógia: izoterm átkristályosodás → kolloid rendszerek öregedése) -kapilláris kondenzáció -gőzök túltelíthetősége Hogyan függ a görbültségtől? Kelvin-egyenlet: RT ln (Pr/P∞) = CγV V: a folyadék moltérfogata C (kapilláris konstans): 1/r1+ 1/r2 Domború felszín esetén r (+), homorú esetén(-)

  12. Különböző méretű vízcseppek gőznyomása Otthoni tanulmányozásra „A kondenzáció gátoltsága” Izoterm átkristályosodás („Ostwald ripening”) A kisebb méretű részecskék feloldódnak, a nagyobbak még nagyobbak lesznek!

  13. Otthoni tanulmányozásra 4. A felületi feszültség mérésének módszerei Egyfolyadékos - kétfolyadékos Sztatikus (kapilláris emelkedés v. módosított Wilhelmy-lemezes módszer) – dinamikus (változó nagyságú határfelület: pl. maximális buboréknyomás v. oszcilláló sugár módszer) Egyensúlyi – nem egyensúlyi (a határfelületen nem kerülnek egyensúlyba, ill. nem stacionáriusak a molekuláris – adszorpciós, deszorpciós – folyamatok)

  14. Módszerek Otthoni tanulmányozásra Cseppsúly v. csepptérfogat meghatározása sztalagmométerben Egy- és kétfolyadékos (Donnan-pipetta) sztalagmométerek korrekciós tényező Problémák: -nem egész csepp szakad le -az erők nem mindig függőlegesen hatnak -kapilláris nyomás lép fel   y  |  x  Függőcsepp módszer: alakanalízis (x és y) A csepp alakját a gravitációs és a felületi feszültségből származó erő együttesen határozza meg (az alak a differenciálgeometrián alapuló egyenlettel adható meg). Az egyenlet megoldás szolgáltatja a felületi feszültséget.

  15. Otthoni tanulmányozásra Tenziometrikus módszerek Pt-lemez Wilhelmy-lemezes módszer Kiszakításos és módosított Tökéletes nedvesítés esetén. Amennyiben nem tökéletes a nedvesítés, akkor nedvesítési feszültséget mérünk. (2x + 2y): peremvonal hossza G: a lemezke „súlyereje” Gyűrű-módszer (Du Nouy) (kiszakításos) (Krüss)

  16. Otthoni tanulmányozásra Maximális buboréknyomás (Pmax) mérése (tökéletes nedvesedés) Differenciális kapilláris emelkedés módszere (tökéletes nedvesedés) Mérni csak Δh–t kell!

  17. Otthoni tanulmányozásra Folyadék-folyadék határfelület Jelentőség pl. emulziók esetében γ12 határfelületi feszültség Antonov-szabály: γ12 = |γ1G - γ2G| Folyadék fázisok érintkezésekor fellépő jelenségek 1. Kontakt helyzet

  18. 2. Film helyzet: terülés Spontán végbemegy, ha adhézió (1-2) nagyobb, mint a kohézió (2-2). Adhéziós munka (Wa): egységnyi felületen érintkező különnemű fázisok szétválasztása Otthoni tanulmányozásra

  19. Otthoni tanulmányozásra Kohéziós munka ( ): egységnyi felületen érintkező azonos fázisok szétválasztása.

  20. Otthoni tanulmányozásra Azaz a terülésnek kedvez a megszűnő felület nagy és a keletkező felületek kicsi felületi feszültsége. S21= -Egységnyi nagyságú felületek megszűnésére és keletkezésére -Megadja a terülést kísérő szabadenergia változást

  21. Otthoni tanulmányozásra Kezdeti és egyensúlyi szétterülési együttható 8,9 mJ/m2, terül -1,6 mJ/m2 nem terül Autofóbia: saját filmjén nem terül (pl. hexanol, olajsav)

More Related