420 likes | 1.78k Views
TRANSFORMASI KOORDINAT & PERUBAHAN VARIABEL PADA INTEGRAL LIPAT. TIM DOSEN KALKULUS 2 Desember 2011. Transformasi Koordinat.
E N D
TRANSFORMASI KOORDINAT & PERUBAHAN VARIABEL PADA INTEGRAL LIPAT TIM DOSEN KALKULUS 2 Desember 2011
Transformasi Koordinat • Dalam menyelesaikan integral lipat atas suatu daerah R, dapat diselesaikan dengan menggunakan koordinat lain selain dengan menggunakan koordinat persegi panjang xy. • Transformasi dari satu koordinat persegi panjang ke sistem koordinat lainnya.
Transformasi Koordinat • Tinjau suatu fungsi T, yang mempunyai domain D (daerah pada bidang xy) dan mempunyai range E (daerah pada bidang uv), sehingga T(x,y)=(u,v). • T transformasi koordinat dari bidang xy ke bidang uv. • u dan v adalah fungsi dari x dan y
Transformasi Koordinat y v (x,y) T (u,v) x u
Contoh • T suatu transformasi koordinat yang didefinisikansbb: u=x+2y , v=x-2y. (T(x,y) a. Tentukan nilai untuk (0,1),(1,2) dan (2,-3) b. Gambarkan pada bidang uv garis vertikal untuk u=2,u=4,u=6,u=8 dan garis horisontal untuk v=-1,v=1,v=3,v=5. c. Gambarkan hubungan kurva u dan kurva v dalam bidang xy.
Transformasi Koordinat • Jika T suatu transformasi koordinat satu-satu, maka bisa dicari invers atau transformasi balikannya dari T, yakni T-1 dari bidang uv ke bidang xy x = F(u,v) y = G(u,v) • Jika T suatu transformasi satu-satu maka inversnya T-1 . Dalam hal ini , T-1(T(x,y)) = (x,y) dan T(T-1(u,v)) = (u,v) untuk setiap (x,y) di D dan setiap (u,v) di E.
Contoh • Tentukan invers dari transformasi T yang didefinisikan pada contoh sebelumnya. • Gambarkan kurva pada bidang uv yang memetakan ellips atas T-1
Perubahan Variabel pada Integral Lipat • Tinjau untuk suatu daerah R dalam bidang xy, substitusi x=f(u,v) dan y=g(u,v). Persamaan ini menyatakan transformasi koordinat W dari bidang uv ke bidang xy. Dalam hal ini menentukan daerah S di bidang uv yang ditransformasi dari R oleh W(menentukan batas integral baru)
Matriks Jacobian • Jika x=f(u,v) dan y=g(u,v), maka Jacobian dari x dan y adalah
Contoh • Tentukan jacobian dari • Jika , tentukan jacobian
Theorema • Jika x=f(u,v) dan y=g(u,v) adalah transformasi koordinat, maka Dimana G(u,v) = F{f(u,v),g(u,v)}
Contoh • Hitung untuk daerah R pada bidang xy yang dibatasi oleh trapezoid dengan titik sudut (0,1), (0,2), (2,0) dan (1,0). • Hitung untuk daerah R di kuadran pertama pada bidang xy antara lingkaran yang berjari-jari 1 dan berjari-jari 2.
Transformasi diatas dapat diperluas untuk menyelesaikan integral lipat tiga. Diberikan transformasi x=f(u,v,w) , y=g(u,v,w) , z=h(u,v,w) dari sistem koordinat uvw ke sistem koordinat xyz. • Jacobian =
Theorema • Jika x=f(u,v,w) , y=g(u,v,w) , z=h(u,v,w) transformasi koordinat, maka Dimana G(u,v,w)=F{f(u,v,w),g(u,v,w),h(u,v,w)}
Contoh • Tentukan jacobian dari x = 2u + 3v – w, y = u – 5w ,z = u + 4w • Dengan menggunakan koordinat silinder, tentukan volume benda di atas bidang xy, yang dibatasi oleh paraboloid dan silinder
Contoh • Dengan menggunakan koordinat bola tentukan volume benda yang bagian atasnya dibatasi oleh bola dan bagian bawah dibatasi oleh kerucut