1 / 27

Die t-Verteilung

Die t-Verteilung. Jonathan Harrington. Standard error of the mean (SE). ist die Standardabweichung von Mittelwerten. Ich werfe 5 Würfel und berechne den Mittelwert der Zahlen. m. = 3.5. der wahrscheinlichste Wert.

rudolf
Download Presentation

Die t-Verteilung

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Die t-Verteilung Jonathan Harrington

  2. Standard error of the mean (SE) ist die Standardabweichung von Mittelwerten Ich werfe 5 Würfel und berechne den Mittelwert der Zahlen m = 3.5 der wahrscheinlichste Wert Die Verteilung der Mittelwerte. Bedeutung: ich werde nicht jedes Mal einen Mittelwert m = 3.5 bekommen, sondern davon abweichende Mittelwerte. Der SE ist eine numerische Verschlüsselung dieser Abweichung.

  3. Standard error of the mean (SE) sigma()/sqrt(5) sigma <- function(unten=1, oben=6) { x = unten:oben n = length(x) m = mean(x) sqrt((sum(x^2)/n - m^2)) } 0.7637626

  4. Standard error of the mean (SE) und der Vertrauensintervall oder qnorm(0.025, 3.5, sigma()/sqrt(5)) 2.003025 qnorm(0.975, 3.5, sigma()/sqrt(5)) 4.996975 Probieren! a = proben(1, 6, 5, 100) sum(a < 2 | a > 5) 3.5 - 1.96 * sigma()/sqrt(5) 95% Vertrauensintervall qnorm(0.025) Bedeutung: Wenn ich 5 Würfel werfe, dann liegt der Stichproben-Mittelwert, m, dieser 5 Zahlen zwischen 2.00 und 5.00 mit einer Wahrscheinlichkeit von 95% (0.95).

  5. Standard error of the mean (SE) und der Vertrauensintervall n ist die Anzahl der Werte, über die wir m berechnen. umso größer n, umso weniger weichen die Stichprobenmittelwerte von m ab. Oder: Je mehr Würfel wir werfen, umso wahrscheinlicher ist es/sicherer wird es sein, dass m nah an m ist. Im unendlichen Fall – wir werfen unendlich viele Würfel und berechnen deren Zahlenmittelwert – ist SE 0 (NULL) und m = m = 3.5. SE wird kleiner, umso größer n.

  6. Hier sind 12 Werte (Silben/Sekunde) von einem Sprecher. swerte [1] 6 5 6 9 6 5 6 8 5 6 10 9 Frage: sind die Werte überraschend? (angenommen m = 6?). Standard error of the mean (SE) wenn s unbekannt ist. Lenneberg behauptet, dass wir im Durchschnitt mit einer Geschwindigkeit von 6 Silben pro Sekunde sprechen. Präzisere/bessere Frage: ist der Unterschied zwischen m und msignifikant? (Oder: fällt m außerhalb des 95% Vertrauensintervalls von m?). Das Verfahren: a one-sampled t-test

  7. Präzisere/bessere Frage: fällt m außerhalb des 95% Vertrauensintervalls von m? A. Um das Vertrauensintervall um m zu berechnen, benötigen wir den SE. B. Damit lässt sich ein Vertrauensintervall m – k SE bis m + k SE setzen (k ist eine gewisse Anzahl von SEs). C. Wenn m (in diesem Fall 6.75) innerhalb dieses Intervalls fällt, ist das Ergebnis 'nicht signifikant' (konsistent mit der Hypothese, dass wir im Durchschnitt mit 6 Silben pro Sekunde sprechen).

  8. Aber das können wir nicht berechnen, weil wir s nicht wissen! Wir können aber s oder unsere beste Einschätzung von s berechnen ^ ^ In R kann s ganz einfach mit sd() berechnet werden. Für diesen Fall: werte [1] 6 5 6 9 6 5 6 8 5 6 10 9 shut = sd(werte) A. Standard error of the mean (SE) berechnen

  9. A. Standard error of the mean (SE) einschätzen werte [1] 6 5 6 9 6 5 6 8 5 6 10 9 shut = sd(werte) Einschätzung des Standard-Error ^ = SE SEhut = shut/sqrt(12) 0.5093817

  10. B. Vertrauensintervall: die t-Verteilung Die t-Verteilung ist der Normalverteilung recht ähnlich, aber die 'Glocke' und daher das Vertrauensintervall sind etwas breiter (dies berücksichtigt, die zusätzliche Unsicherheit die wegen s entsteht). ^ ^ Je höher df, umso sicherer können wir sein, dass s = s und umso mehr nähert sich die t-Verteilung der Normalverteilung Wenn die Bevölkerungs-Standardabweichung eingeschätzt werden muss, dann wird das Vertrauensintervall nicht mit der Normal- sondern der t-Verteilung mit einer gewissen Anzahl von Freiheitsgraden berechnet. Bei diesem one-sample t-test ist die Anzahl der Freiheitsgrade, df (degrees of freedom), von der Anzahl der Werte in der Stichprobe abhängig: df = n – 1

  11. Normalverteilung, m = 0, s = 1. t-Verteilung, m = 0, s = 1, df = 3 > plot(function(x)dt(x, 3), -4, 4, add=T, col="blue") > plot(function(x)dnorm(x, 0, 1), -4, 4) 0.4 0.3 function(x) dnorm(x, 0, 1) (x) 0.2 0.1 0.0 -4 -2 0 2 4 > plot(function(x)dt(x, 10), -4, 4, add=T, col="red") x

  12. B. Vertrauensintervall um m = 6 mu = 6 n = length(swerte) SEhut = sd(swerte)/sqrt(n) # eingeschätzter SE frei = n - 1 # Freiheitsgrade mu + SEhut * qt(0.025, frei) # untere Grenze 4.878858 mu + SEhut * qt(0.975, frei) # obere Grenze 7.121142

  13. C. Signifikant? Auf der Basis dieser Stichprobe liegt m zwischen 4.878858 und 7.121142 mit einer Wahrscheinlichkeit von 95%. Frage: angenommen m = 6 sind die Werte überraschend? mean(swerte) [1] 6.75 Nein.

  14. The two-sampled t-test Meistens werden wir 2 Stichprobenmittelwerte miteinander vergleichen wollen (und wesentlich seltener wie im vorigen Fall einen Stichprobenmittelwert, m, mit einem Bevölkerungsmittelwert, m).

  15. Ich kaufe 20 Äpfel von X, 35 von Y. Ich wiege jeden Apfel und berechne: X Y Gewicht-Mittelwert mx = 200 my = 220 Gewicht S-abweichung sx = 20 sy = 30 Anzahl nx = 20 ny = 35 Zwei Händler, X und Y, verkaufen Äpfel am Markt. Die Äpfel von Y sind teuerer, weil seine Äpfel mehr wiegen (behauptet Y). Ist dieser Unterschied mx – my = 200 – 220 = – 20 g signifkant?

  16. Hypothesen H0: Es gibt keinen signifikanten Unterschied zwischen den Mittelwerten. = die Wahrscheinlichkeit, dass der Unterschied zwischen diesen Mittelwerten 0 sein könnte ist mehr als 0.05 (kommt öfter als 5 Mal pro Hundert vor). H1: Es gibt einen signifikanten Unterschied zwischen den Mittelwerten = die Wahrscheinlichkeit, dass der Unterschied zwischen diesen Mittelwerten 0 sein könnte ist weniger als 0.05 (kommt seltener als 5 Mal pro Hundert vor).

  17. Vorgang Wir nehmen an, dass mx – my = -20 g eine Stichprobe aus einer Normalverteilung ist. 1. Wir müssen die Parameter m, s (und dann SE) dieser Normalverteilung einschätzen. 2. Wir erstellen ein 95% Vertrauensintervall fuer die t-Verteilung. 3. Wenn dieses Vertrauenintervall 0 einschließt, ist H0 akzeptiert (kein signifikanter Unterschied zwischen mx und my) sonst H1 (der Unterschied ist signifikant).

  18. 1. m, SE einschätzen Die beste Einschätzung von m ist der Mittelwertunterschied unserer Stichprobe Fuer diesen Fall mu = mx – my = – 20

  19. X Y Gewicht-Mittelwert mx = 200 my = 220 Gewicht S-abweichung sx = 20 sy = 30 Anzahl nx = 20 ny = 35 Für diesen Fall, SEhut = 7.525339 Bitte in R-Befehle umsetzen und bestätigen. 1. SE einschätzen Die beste Einschätzung von SE x

  20. nx = 20 ny = 35 sx = 20 sy = 30 z = ((nx - 1) * sx^2) + ((ny - 1) * sy^2) nenn = nx + ny - 2 SEhut = sqrt(z/nenn) * sqrt(1/nx + 1/ny) [1] 7.525339

  21. -4.906081 -35.09392 Der Unterschied zwischen den Mittelwerten liegt zwischen -35.09392g und -4.906081g mit einer Wahrscheinlichkeit von 95% 95% Vertrauensintervall df = nx + ny - 2 -20 - qt(0.025, df) * SEhut -20 + qt(0.025, df) * SEhut SEhut =7.525339 m = -20

  22. H1: Es gibt einen signifikanten Unterschied zwischen den Mittelwerten Der Unterschied zwischen den Mittelwerten liegt zwischen -35.09392g und -4.906081g mit einer Wahrscheinlichkeit von 95% Die Wahrscheinlichkeit, dass der Unterschied zwischen den Mittelwerten 0 sein könnte ist daher weniger als 5% (kommt weniger als 5 Mal pro 100 Stichproben vor). Daher akzeptieren wir H1:

  23. Die benötigten Dauern (Minuten) an 9 Tagen im Winter in die Arbeit zu fahren sind: 20 15 19 22 17 16 23 18 20 Die entsprechenden Dauern an 11 Tagen im Sommer sind: 18 15 17 24 15 12 14 11 13 17 18 Ist der Unterschied zwischen den durchschnittlichen Sommer- und Winterzeiten signifikant (p < 0.05)?

  24. Eine R-Funktion schreiben, SE2(x,y), um x zu berechnen. x = c(10, 15, 19, 9, 12, 8) y = c(14, 11, 9, 10, 4, 4, 19, 10) SE2(x, y) [1] 2.502747

  25. SE2 <- function(x, y) { nx = length(x) ny = length(y) sx = sd(x) sy = sd(y) num = ((nx - 1) * sx^2) + ((ny - 1) * sy^2) den = nx + ny - 2 sqrt(num/den) * sqrt(1/nx + 1/ny) }

  26. d - qt(0.025, df) * SEhut d + qt(0.025, df) * SEhut x = c(20, 15, 19, 22, 17, 16, 23, 18, 20) y = c(18, 15, 17, 24, 15, 12, 14, 11, 13, 17, 18) # SE SEhut = = SE2(x,y) # m mean(x) - mean(y) d = # Anzahl der Freiheitsgrade length(x) + length(y) - 2 df = # Vertrauensintervall [1] 0.03094282 [1] 6.110471

  27. Die t-test() Funktion > t.test(x, y, var.equal=T) Die Wahrscheinlichkeit, dass der Unterschied zwischen dem Durchschnitt von x und dem Durchschnitt von y = 0 95% Vertrauensintervall data: x and y t = 2.1223, df = 18, p-value = 0.04794 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 0.03094282 6.11047132 sample estimates: mean of x mean of y 18.88889 15.81818 t=2.1233 bedeutet: die Werte von 0 und -20 sind 2.1233 SEs voneinander entfernt

More Related