150 likes | 286 Views
Profesor: Víctor Manuel Reyes F. Asignatura: Matemática para Ciencias de la Salud (MAT-011) Segundo Semestre 2012. La Derivada. Miren al piso. Lo ven plano, pero sabemos que la superficie de la tierra es curva. ¿Por que el piso se ve plano?.
E N D
Profesor: Víctor Manuel Reyes F. • Asignatura: Matemática para Ciencias de la Salud (MAT-011) • Segundo Semestre 2012
La Derivada Miren al piso. Lo ven plano, pero sabemos que la superficie de la tierra es curva. ¿Por que el piso se ve plano? Estamos viendo un diferencial de área, una parte muy chiquita (la derivada en ese punto) por lo que se ve "recto", "lineal", plano.
La Derivada La derivada es la pendiente de la recta tangente a un punto de una función. 2t2 – 56t + 3600 30t + 2760
Análisis de la Derivada El peso, en gramos, de un bebé en los primeros 56 días de vida.
Técnicas de Derivación La derivada de una función potencial: Si: f(x) = xr, entonces: f’(x) = r xr-1 Si: f(x) = x5, entonces: f’(x) = 5 x5-1 = 5x4 f(x) = x-3 La derivada de una función Constante Si: f(x) = k, entonces: f’(x) = 0 Si: f(x) = 7, función constante, entonces: f’(x) = 0
Técnicas de Derivación La derivada de una Constante por una función Si: y = k f(x), entonces: y’ = k f’(x) Si: y = f(x) = 4x3, entonces: f’(x) = 4 3x2= 12x2 f(x) = 6x-5 4 ___ f(x) = x3
Técnicas de Derivación La derivada de una Suma de funciones Si: f(x) = (u) + (v), entonces: f’(x) = (u’) + (v’) Si: f(x) = 5x4 + 7x-2 - 3x, entonces: f’(x) = 20x3- 14x-3 -3 f(x) = 3x2 (2+x3) ____________ 12t4+ 8t2 - 6 f(x) = 2t2
Técnicas de Derivación La derivada de un Producto de dos funciones Si: f(x) = (u) (v), entonces: f’(x) = (u) (v’) + (u’) (v) Si: f(x) = 2x3(1 - 3x2) entonces: f’(x) = 2x3 (-6x)+ 6x2 (1 - 3x2) f(x) = (3x2– 4x) (2x + 5x4)
Técnicas de Derivación La derivada de un cociente o división de funciones Si: f(x) = , entonces: f(x)’ = Si: f(x) = , entonces: f(x)’ =
Técnicas de Derivación La derivada de una función de logaritmo natural Si: f(x) = logau, entonces: Si: y = f(x) = log3(4x2), entonces:
Técnicas de Derivación La derivada de una función de logaritmo natural Si: f(x) = ln(x), entonces: Si: y = f(x) = ln(4x2), entonces:
Técnicas de Derivación La derivada de una función exponencial Si: f(x) = au, entonces: Si: y = f(x) = 22x, entonces:
Técnicas de Derivación La derivada de una función exponencial Si: f(x) = ex, entonces: Si: y = f(x) = e2x, entonces: