440 likes | 844 Views
Cinética Química. Prof. Xuxu. Seja Bem-Vindo a Goiânia. Seja Bem-Vindo a Hidrolândia. Velocidade Média. Hora da saída: 11:45. Distância Hidrolândia: 40 km. Hora da chegada: 12:45. Velocidade das reações químicas. Velocidade das reações químicas.
E N D
Cinética Química Prof. Xuxu
Seja Bem-Vindo a Goiânia Seja Bem-Vindo a Hidrolândia Velocidade Média Hora da saída: 11:45 Distância Hidrolândia: 40 km Hora da chegada: 12:45
Velocidade das reações químicas. A cabeça de palito de fósforo contém uma substância chamada trissulfeto de tetrafósforo. Esse composto inflama na presença de oxigênio, ocorrendo, à pressão ambiente, a liberação de uma grande quantidade de calor.
Velocidade de consumo/formação de uma substância A velocidade de consumo/formação de uma substância que participa de uma reação, é calculada através da variação da quantidade(nº de mol, massa ou concentração molar) pelo tempo com que a variação ocorreu.
2 N2O5(g) 4 NO2(g) + 1 O2(g) Note que a inclinação da curva NO2 é maior que a curva O2, fato relacionado com os coeficientes estequiométricos
2 N2O5(g) 4 NO2(g) + 1 O2(g) a) Velocidade média de consumo do N2O5 entre t = 0 e t = 5 min: b) Velocidade média de consumo do N2O5 entre t = 5 e t = 10 min:
2 N2O5(g) 4 NO2(g) + 1 O2(g) a) Velocidade média de produção do NO2 entre t = 0 e t = 5 min: b) Velocidade média de produção do NO2 entre t = 5 e t = 10 min:
Velocidade média da reação (Vm) Considere uma reação genérica: Em que as letras minúsculas são os coeficientes (nº de mol) e as maiúsculas são as substâncias participantes da reação. aA + bB cC + dD
Velocidade média de uma reação 2 A 4B + C 2 4 + 1 0,02 mol/L.min 0,04 mol/L.min 0,01 mol/L.min 0,01 mol/L.min Vmédia da reação = 0,02 mol/L.min = 0,04 mol/L.min = 2 4 1 Vmédia da reação = 0,01 mol/L.min
Exercício resolvido Considere a equação abaixo: N2 (g) + 3 H2 (g) 2 NH3 (g) Sabendo que:[H2] inicial = 6 mol/L; [H2] final = 2 mol/L; t = 20 min. Responda: a) Qual a velocidade média da reação? Resposta:Como os dados referem-se ao H2 devemos calcular primeiramente sua velocidade:
Agora vamos calcular a velocidade média da reação. b) qual a velocidade de formação do NH3?
Lei de Guldberg-Waage ou Lei da velocidade A influência da concentração dos reagentes sobre a velocidade das reações foi enunciada em 1864 pelos cientistas Cato Maximilian Guldberg e Peter Waage, por meio da lei da ação das massas. “A velocidade de uma reação é diretamente proporcional ao produto das concentrações molares dos reagentes, elevadas a expoentes determinados experimentalmente”.
Lei de Guldberg-Waage ou Lei da velocidade Considere a reação genérica: a A + b B c C + d D V = k [A]a [B]b V = velocidade da reação; k = constante da reação; [A]; [B] = concentrações de A e B em mols/L; a = coeficiente de A;ordem da reação em relação a A; b= coeficiente de B; ordem da reação em relação a B; a + b = ordem global da reação.
Fique Ligado: A lei da velocidade deve ser aplicada para reações elementares (reações que ocorrem em uma única etapa) No mecanismo de reações (reações que ocorrem em várias etapas) devemos considerar a etapa lenta como a propulsora da expressão da lei da velocidade. Quando uma reação ocorrer em duas ou mais etapas, a velocidade da reação global será determinada pela etapa lenta, chamada de etapa determinanteda reação.
Exemplo: Dado a Reação elementar: N2 (g) + 3 H2 (g) 2 NH3 (g) Lei da velocidade: V= k [N2] [H2]3 Ordem da reação: 1+3= 4 então 4ª ordem
Exemplo: Dado o mecanismo abaixo: H2(g) + 2NO(g) N2O(g) + H2O(l) (lenta) H2(g) + N2O(g) N2(g) + H2O(l) (rápida) 2H2(g)+2NO(g)N2(g)+2H2O(l) (equação global) Então: V = k [H2] [NO]2
Observações k é a constante de velocidade e depende fundamentalmente da temperatura. Substâncias no estado sólido não participam da expressão de velocidade. Exemplo: Na2O(s) + CO2(g) Na2CO3(s) V = k [CO2]
Para a reação não-elementar: H2O2 + 2I + 2H+ → 2H2O + I2 Foram obtidos os seguintes resultados: A velocidade da reação depende apenas das concentrações de H2O2 e I.
No estudo cinético de uma reação foram obtidos os seguintes dados: A expressão da velocidade pode ser representada por : V = k [HgCl2] . [C2O42-]2
EQUAÇÃO DE ARRHENIUS Em que: k- constante de velocidade A – fator de freqüência (medida da probabilidade de uma colisão eficaz) Ea – energia de ativação (kJ/ mol) R – constante dos gases ideais ( em unidades S.I. 8,314 J/K . mol) T – temperatura absoluta Quanto menor Ea e maior T , maior k.
Equação da velocidade A maneira mais usual de se medir a velocidade de uma reação química é a relação entre a concentração de um dos reagentes do meio reacional e o tempo. Logo: A velocidade de reação normalmente é representada pela letra r (do inglês rate), e assim a forma realmente usual será então a seguinte:
Utilidade das equações cinéticas 1-Calcular a velocidade de uma reação a partir do conhecimento da constante de velocidade e das concentrações de reagentes; 2- Calcular a concentração de reagentes em qualquer instante durante o decorrer de uma reação.
Ordem da reação O termo “ordem” vem da matemática onde é utilizado na classificação das equações diferenciais. As leis de velocidade são equações diferenciais. Em cinética química, tais equações são classificadas de acordo com a ordem da reação. A ordem de uma reação é definida como sendo a soma das potências dos termos de concentração que aparecem na equação de velocidade da reação química. É normalmente, um número inteiro pequeno, podendo em casos especiais, ser zero ou fracionário. É importante ressaltar, que a ordem de reação é uma grandeza que normalmente é obtida a partir de dados experimentais, em grande parte das vezes sem o conhecimento real do mecanismo da reação.
Meia Vida Tempo de meia-vida (t1/2): é o tempo necessário para que a concentração de uma reagente diminua para metade do seu valor inicial. Tempo de meia vida reação de primeira ordem.
Equação concentração-tempo Tempo de meia-vida Ordem Equaçãocinética 1 1 = + kt [A] [A]0 = [A]0 t½ = t½ t½ = ln2 2k k 1 k[A]0 Resumo da cinética de reações de ordem zero, 1ª ordem e 2ª ordem [A] = [A]0 - kt Velocidade=k 0 ln[A] = ln[A]0 - kt 1 Velocidade = k [A] 2 Velocidade = k [A]2
Fatores que influenciam na velocidade de uma reação química Basicamente a ocorrência de uma reação depende de: Contato entre as partículas: (átomos, moléculas ou íons) dos reagentes. Afinidade química: uma certa tendência natural para reagir. Choques eficazes (colisões efetivas): a colisão entre as partículas dos reagentes deve ocorrer em uma orientação favorável, para que as ligações existentes nos reagentes sejam rompidas. Energia de ativação: para que uma reação aconteça, é necessário um mínimo de energia, além daquela que os reagentes já apresentam.
Superfície de contato Quanto maior a superfície de contato entre os reagentes, ou seja, quanto mais pulverizado/fragmentado maior o número de colisões entre as partículas reagentes. Isso faz com que aumente o número de colisões eficazes, aumentando a velocidade da reação. Exemplo: 40kg em forma de gravetos de madeira (queima mais rápido) 40kg em forma de tora de madeira (queima mais lento)
Temperatura Aumentado a temperatura, aumenta a energia cinética das moléculas reagentes (grau de agitação das moléculas), o que proporciona um aumento no número de colisões e aumento do número de moléculas com energia igual ou superior à energia de ativação, aumentado a velocidade da reação. Exemplo: Lavar roupas em água fria (demora mais para retirar manchas) Lavar roupas em água quente (retira as manchas mais rapidamente)
Concentração Aumentando a concentração (quantidade ou até mesmo a pressão de um gás) estamos aumentando o número de choques entre as partículas reagentes, o que conseqüentemente aumenta a velocidade da reação. Exemplo: Se você tomar 10 gotas de um analgésico e a dor de cabeça não passar, o que você normalmente faz é tomar mais 10 gotas. Você aumentou a concentração de analgésico no seu organismo assim ele fará efeito mais rápido.
Catalisador Catalisador é uma espécie química que promove o aumento da velocidade de uma reação através da diminuição da energia de ativação. O catalisador participa temporariamente do processo, formando com os reagentes um complexo ativado menos energético. Porém ao final da reação é completamente recuperado, sem sofrer alteração na sua composição ou massa. Ex.: N2(g) + 3H2(g) 2NH3 ; V1 N (g) + 3H2(g) 2NH3 ; V2 Com certeza o V2 é maior que o V1, pois o ferro age como catalisador na segunda reação. Fe(s)
Catálise homogênea Catalisador e reagentes estão no mesmo estado físico (possui apenas uma fase). 2H2O2 (aq) 2H2O (l) + O2 (g)
Catálise heterogênea Catalisador e reagentes se encontram em estados físicos diferentes (possui duas ou mais fases). C2H4 (g) + H2 (g) C2H6 (g)
Catálise enzimática Algumas reações que ocorrem rapidamente dentro do corpo humano, demorariam muito tempo para ocorrer fora, isto porque no corpo humano temos enzimas que são catalisadores. A ação de uma enzima é altamente específica, ou seja, geralmente cada enzima catalisa uma única reação. A enzima maltase, por exemplo, catalisa apenas o processo de transformação da maltose em glicose: C12H22O11 (aq) + H2O 2 C6H12O6 (aq) Outra reação que se não fosse a enzima ptialina (encontrada na saliva) levaria dias para ocorrer é a decomposição do amido.