1 / 25

EE 5340 Semiconductor Device Theory Lecture 03 – Spring 2011

EE 5340 Semiconductor Device Theory Lecture 03 – Spring 2011. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc. Review the Following. R. L. Carter’s web page: www.uta.edu/ronc/

sancha
Download Presentation

EE 5340 Semiconductor Device Theory Lecture 03 – Spring 2011

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EE 5340Semiconductor Device TheoryLecture 03 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc

  2. Review the Following • R. L. Carter’s web page: • www.uta.edu/ronc/ • EE 5340 web page and syllabus. (Refresh all EE 5340 pages when downloading to assure the latest version.) All links at: • www.uta.edu/ronc/5340/syllabus.htm • University and College Ethics Policies • www.uta.edu/studentaffairs/conduct/ • Makeup lecture at noon Friday (1/28) in 108 Nedderman Hall. This will be available on the web.

  3. First Assignment • Send e-mail to ronc@uta.edu • On the subject line, put “5340 e-mail” • In the body of message include • email address: ______________________ • Your Name*: _______________________ • Last four digits of your Student ID: _____ * Your name as it appears in the UTA Record - no more, no less

  4. Second Assignment • Submit a signed copy of the document posted at www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf

  5. Kronig-Penney Model A simple one-dimensional model of a crystalline solid • V = 0, 0 < x < a, the ionic region • V = Vo, a < x < (a + b) = L, between ions • V(x+nL) = V(x), n = 0, +1, +2, +3, …, representing the symmetry of the assemblage of ions and requiring that y(x+L) = y(x) exp(jkL), Bloch’s Thm

  6. K-P Potential Function*

  7. K-P Impulse Solution • Limiting case of Vo-> inf. and b -> 0, while a2b = 2P/a is finite • In this way a2b2 = 2Pb/a < 1, giving sinh(ab) ~ ab and cosh(ab) ~ 1 • The solution is expressed by P sin(ba)/(ba) + cos(ba) = cos(ka) • Allowed valued of LHS bounded by +1 • k = free electron wave # = 2p/l

  8. K-P Solutions*

  9. K-P E(k) Relationship*

  10. Analogy: a nearly-free electr. model • Solutions can be displaced by ka = 2np • Allowed and forbidden energies • Infinite well approximation by replacing the free electron mass with an “effective” mass (noting E = p2/2m = h2k2/2m) of

  11. Generalizationsand Conclusions • The symm. of the crystal struct. gives “allowed” and “forbidden” energies (sim to pass- and stop-band) • The curvature at band-edge (where k = (n+1)p) gives an “effective” mass.

  12. Silicon BandStructure** • Indirect Bandgap • Curvature (hence m*) is function of direction and band. [100] is x-dir, [111] is cube diagonal • Eg = 1.17-aT2/(T+b) a = 4.73E-4 eV/K b = 636K

  13. Generalizationsand Conclusions • The symm. of the crystal struct. gives “allowed” and “forbidden” energies (sim to pass- and stop-band) • The curvature at band-edge (where k = (n+1)p) gives an “effective” mass.

  14. Analogy: a nearly-free electr. model • Solutions can be displaced by ka = 2np • Allowed and forbidden energies • Infinite well approximation by replacing the free electron mass with an “effective” mass (noting E = p2/2m = h2k2/2m) of

  15. Silicon Covalent Bond (2D Repr) • Each Si atom has 4 nearest neighbors • Si atom: 4 valence elec and 4+ ion core • 8 bond sites / atom • All bond sites filled • Bonding electrons shared 50/50 _= Bonding electron

  16. Si Energy BandStructure at 0 K • Every valence site is occupied by an electron • No electrons allowed in band gap • No electrons with enough energy to populate the conduction band

  17. Si Bond ModelAbove Zero Kelvin • Enough therm energy ~kT(k=8.62E-5eV/K) to break some bonds • Free electron and broken bond separate • One electron for every “hole” (absent electron of broken bond)

  18. Band Model forthermal carriers • Thermal energy ~kT generates electron-hole pairs • At 300K Eg(Si) = 1.124 eV >> kT = 25.86 meV, Nc = 2.8E19/cm3 > Nv = 1.04E19/cm3 >> ni = 1.45E10/cm3

  19. Donor: cond. electr.due to phosphorous • P atom: 5 valence elec and 5+ ion core • 5th valence electr has no avail bond • Each extra free el, -q, has one +q ion • # P atoms = # free elect, so neutral • H atom-like orbits

  20. Bohr model H atom-like orbits at donor • Electron (-q) rev. around proton (+q) • Coulomb force, F=q2/4peSieo,q=1.6E-19 Coul, eSi=11.7, eo=8.854E-14 Fd/cm • Quantization L = mvr = nh/2p • En= -(Z2m*q4)/[8(eoeSi)2h2n2] ~-40meV • rn= [n2(eoeSi)h2]/[Zpm*q2] ~ 2 nm for Z=1, m*~mo/2, n=1, ground state

  21. Band Model fordonor electrons • Ionization energy of donor Ei = Ec-Ed ~ 40 meV • Since Ec-Ed ~ kT, all donors are ionized, so ND ~ n • Electron “freeze-out” when kT is too small

  22. Acceptor: Holedue to boron • B atom: 3 valence elec and 3+ ion core • 4th bond site has no avail el (=> hole) • Each hole, adds --q, has one -q ion • #B atoms = #holes, so neutral • H atom-like orbits

  23. Hole orbits andacceptor states • Similar to free electrons and donor sites, there are hole orbits at acceptor sites • The ionization energy of these states is EA - EV ~ 40 meV, so NA ~ p and there is a hole “freeze-out” at low temperatures

  24. Impurity Levels in Si: EG = 1,124 meV • Phosphorous, P: EC - ED = 44 meV • Arsenic, As: EC - ED = 49 meV • Boron, B: EA - EV = 45 meV • Aluminum, Al: EA - EV = 57 meV • Gallium, Ga: EA - EV = 65meV • Gold, Au: EA - EV = 584 meV EC - ED = 774 meV

  25. References • *Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989. • **Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago. • M&K = Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003.

More Related