250 likes | 371 Views
EE 5340 Semiconductor Device Theory Lecture 03 – Spring 2011. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc. Review the Following. R. L. Carter’s web page: www.uta.edu/ronc/
E N D
EE 5340Semiconductor Device TheoryLecture 03 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc
Review the Following • R. L. Carter’s web page: • www.uta.edu/ronc/ • EE 5340 web page and syllabus. (Refresh all EE 5340 pages when downloading to assure the latest version.) All links at: • www.uta.edu/ronc/5340/syllabus.htm • University and College Ethics Policies • www.uta.edu/studentaffairs/conduct/ • Makeup lecture at noon Friday (1/28) in 108 Nedderman Hall. This will be available on the web.
First Assignment • Send e-mail to ronc@uta.edu • On the subject line, put “5340 e-mail” • In the body of message include • email address: ______________________ • Your Name*: _______________________ • Last four digits of your Student ID: _____ * Your name as it appears in the UTA Record - no more, no less
Second Assignment • Submit a signed copy of the document posted at www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf
Kronig-Penney Model A simple one-dimensional model of a crystalline solid • V = 0, 0 < x < a, the ionic region • V = Vo, a < x < (a + b) = L, between ions • V(x+nL) = V(x), n = 0, +1, +2, +3, …, representing the symmetry of the assemblage of ions and requiring that y(x+L) = y(x) exp(jkL), Bloch’s Thm
K-P Impulse Solution • Limiting case of Vo-> inf. and b -> 0, while a2b = 2P/a is finite • In this way a2b2 = 2Pb/a < 1, giving sinh(ab) ~ ab and cosh(ab) ~ 1 • The solution is expressed by P sin(ba)/(ba) + cos(ba) = cos(ka) • Allowed valued of LHS bounded by +1 • k = free electron wave # = 2p/l
Analogy: a nearly-free electr. model • Solutions can be displaced by ka = 2np • Allowed and forbidden energies • Infinite well approximation by replacing the free electron mass with an “effective” mass (noting E = p2/2m = h2k2/2m) of
Generalizationsand Conclusions • The symm. of the crystal struct. gives “allowed” and “forbidden” energies (sim to pass- and stop-band) • The curvature at band-edge (where k = (n+1)p) gives an “effective” mass.
Silicon BandStructure** • Indirect Bandgap • Curvature (hence m*) is function of direction and band. [100] is x-dir, [111] is cube diagonal • Eg = 1.17-aT2/(T+b) a = 4.73E-4 eV/K b = 636K
Generalizationsand Conclusions • The symm. of the crystal struct. gives “allowed” and “forbidden” energies (sim to pass- and stop-band) • The curvature at band-edge (where k = (n+1)p) gives an “effective” mass.
Analogy: a nearly-free electr. model • Solutions can be displaced by ka = 2np • Allowed and forbidden energies • Infinite well approximation by replacing the free electron mass with an “effective” mass (noting E = p2/2m = h2k2/2m) of
Silicon Covalent Bond (2D Repr) • Each Si atom has 4 nearest neighbors • Si atom: 4 valence elec and 4+ ion core • 8 bond sites / atom • All bond sites filled • Bonding electrons shared 50/50 _= Bonding electron
Si Energy BandStructure at 0 K • Every valence site is occupied by an electron • No electrons allowed in band gap • No electrons with enough energy to populate the conduction band
Si Bond ModelAbove Zero Kelvin • Enough therm energy ~kT(k=8.62E-5eV/K) to break some bonds • Free electron and broken bond separate • One electron for every “hole” (absent electron of broken bond)
Band Model forthermal carriers • Thermal energy ~kT generates electron-hole pairs • At 300K Eg(Si) = 1.124 eV >> kT = 25.86 meV, Nc = 2.8E19/cm3 > Nv = 1.04E19/cm3 >> ni = 1.45E10/cm3
Donor: cond. electr.due to phosphorous • P atom: 5 valence elec and 5+ ion core • 5th valence electr has no avail bond • Each extra free el, -q, has one +q ion • # P atoms = # free elect, so neutral • H atom-like orbits
Bohr model H atom-like orbits at donor • Electron (-q) rev. around proton (+q) • Coulomb force, F=q2/4peSieo,q=1.6E-19 Coul, eSi=11.7, eo=8.854E-14 Fd/cm • Quantization L = mvr = nh/2p • En= -(Z2m*q4)/[8(eoeSi)2h2n2] ~-40meV • rn= [n2(eoeSi)h2]/[Zpm*q2] ~ 2 nm for Z=1, m*~mo/2, n=1, ground state
Band Model fordonor electrons • Ionization energy of donor Ei = Ec-Ed ~ 40 meV • Since Ec-Ed ~ kT, all donors are ionized, so ND ~ n • Electron “freeze-out” when kT is too small
Acceptor: Holedue to boron • B atom: 3 valence elec and 3+ ion core • 4th bond site has no avail el (=> hole) • Each hole, adds --q, has one -q ion • #B atoms = #holes, so neutral • H atom-like orbits
Hole orbits andacceptor states • Similar to free electrons and donor sites, there are hole orbits at acceptor sites • The ionization energy of these states is EA - EV ~ 40 meV, so NA ~ p and there is a hole “freeze-out” at low temperatures
Impurity Levels in Si: EG = 1,124 meV • Phosphorous, P: EC - ED = 44 meV • Arsenic, As: EC - ED = 49 meV • Boron, B: EA - EV = 45 meV • Aluminum, Al: EA - EV = 57 meV • Gallium, Ga: EA - EV = 65meV • Gold, Au: EA - EV = 584 meV EC - ED = 774 meV
References • *Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989. • **Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago. • M&K = Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003.