160 likes | 244 Views
Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental. Hidráulica Geral (ESA024A) Prof. Homero Soares 2º semestre 2011 Terças: 10 às 12 h Quintas: 08 às 10h. Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia.
E N D
Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental Hidráulica Geral (ESA024A) Prof. Homero Soares 2º semestre 2011 Terças: 10 às 12 h Quintas: 08 às 10h
Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental – ESA Prof. Homero Soares Escoamentos Livres - Canais Conceito • pressão atuante = pressão atmosférica. Ex: Objetivos Estudar as características fundamentais dos escoamentos livres; Estudar a distribuição de velocidades e pressões no escoamento. Canais naturais Canais artificiais Tubulações de esgoto e drenagem pluvial
Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental – ESA Prof. Homero Soares Características dos Condutos Livres Canais Naturais A superfície livre pode variar no espaço e no tempo, conseqüentemente os parâmetros hidráulicos (profundidade, largura, declividade, etc.) também podem variar; Apresentam grande variabilidade na forma e rugosidade das paredes. Canais Artificiais Canal é prismático: a seção do conduto é constante ao longo de toda a sua extensão. Canais prismáticos reto: Escoamento permanente e uniforme: características Hidráulicas constantes ao longo do espaço e do tempo.
Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental – ESA Prof. Homero Soares • Os parâmetros geométricos e hidráulicos, utilizados nos cálculos hidráulicos, são dimensões características da seção geométrica por onde flui o líquido. Parâmetros Geométricos da Seção Transversal Seção ou área molhada (A): seção transversal perpendicular à direção de escoamento que é ocupada pelo líquido. Perímetro molhado (P): comprimento da linha de contorno relativo ao contato do líquido com o conduto. Largura superficial (B): Largura da superfície líquida em contato com a atmosfera. Profundidade (y): É a distância do ponto mais profundo da seção do canal e a linha da superfície livre. Raio Hidráulico (Rh): É a razão entre a área molhada e o perímetro molhado. Profundidade hidráulica (yh): Razão entre a área molhada (A) e a largura superficial (B).
Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental – ESA Prof. Homero Soares Problema VII.1 Foram efetuadas medições em um curso d’água como indicado na figura abaixo. Pede-se calcular os parâmetros hidráulicos característicos.
Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental – ESA Prof. Homero Soares • Algumas seções transversais de canais artificiais são geralmente utilizadas. Parâmetros Característicos de Seções Usuais OBS: Ângulo em radianos
Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental – ESA Prof. Homero Soares • Diferentemente dos condutos forçados, em que a pressão é considerada constante na seção transversal do conduto, no caso de escoamentos livres há grande variação da pressão com a variação de profundidade. • Considera-se que a distribuição de pressão na seção obedece a Lei de Stevin (isto é pressão hidrostática). Variação da Pressão na Seção Transversal • Para I < 10% • Considera-se pressão aproximadamente igual a hidrostática b) Para I > 10% Deve-se levar em consideração o ângulo de inclinação (pressão pseudo-hidrostática)
Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental – ESA Prof. Homero Soares • No caso em que a curvatura da linha de corrente no sentido vertical é significativa, como p.ex. VERTEDORES, caracterizando um escoamento curvilíneo, há alteração na distribuição hidrostática de pressões, devendo-se utilizar um fator de correção para determinação da pressão do escoamento. Pressões em Escoamento Bruscamente Variado Escoamentos Curvilíneos Ex. • Escoamento Côncavo • Observa-se uma pressão adicional (∆P) b) Escoamento Convexo Observa-se uma subpressão (∆P) ou redução da pressão em relação à pressão estática P’ = pressão resultante corrigida P = pressão hidrostática g = peso específico da água g = aceleração da gravidade U = velocidade média do escoamento r = Raio de curvatura do fluido P’ = P + ∆P P’ = P - ∆P
Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental – ESA Prof. Homero Soares • A distribuição de velocidades é não uniforme na seção transversal de condutos livres devido ao atrito do líquido com o ar e com as paredes do conduto. • As velocidades aumentam da margem para o centro e do fundo para a superfície. Variação de Velocidade ou ou
Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental – ESA Prof. Homero Soares • Linhas de igual velocidade Isótacas Canais artificiais Canais naturais
Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental – ESA Prof. Homero Soares • A energia correspondente a uma seção transversal (H) de um canal é dada pela soma de três cargas: Cinética, Altimétrica e Piezométrica. Energia Total Energia Total na Seção Transversal de um Canal α - Coeficiente de Coriolis ~ 1. 1,0 < α < 1,1 – Esc. Turbulentos 1,03 < α < 1,36 – Esc. Livres
Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental – ESA Prof. Homero Soares • A energia específica (E) representa a energia medida a partir do fundo do canal para uma dada vazão (Q). Energia Específica Energia Específica a = 1 Energia Cinética Energia Potencial
Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental – ESA Prof. Homero Soares • Sendo a vazão constante e a área da seção função da profundidade, A = f(y), a energia específica dependerá apenas de y e então: Regimes de Escoamento Esta expressão permite estudar a variação da energia específica em função da profundidade, para uma vazão constante.
Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental – ESA Prof. Homero Soares • Observações sobre a curva E x y • Para uma dada vazão existe um valor mínimo (Ec) da energia específica que corresponde ao valor (yc) da profundidade. Ecenergia crítica e ycprofundidade crítica. Regimes de Escoamento Assim: Ec = Energia crítica = Energia Específica Mínima yc = Profundidade crítica b) Para dado valor E’ > Ec da energia específica, existem dois valores de profundidade yf e yt, da profundidade. Baixas velocidades “U” Altas profundidades “y” Regime Fluvial ou Subcrítico, que tem como características: yf > yc Altas velocidades “U” Baixas profundidades “y” Regime Torrencial ou Supercrítico, que tem como características: yt < yc Y = yc Regime Crítico
Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental – ESA Prof. Homero Soares Observações sobre a curva E x y c) Os dois regimes de escoamento correspondentes à uma mesma energia específica (E’), Para: E’ > Ec são chamados Regimes Recíprocos, onde: Regimes de Escoamento yf E1 > E2 Regime Fluvial ou Subcrítico ou tranqüilo. yt E1 < E2 Regime Torrencial ou Supercrítico ou rápido. yc E1 = E2 Regime Crítico d) Cada vazão “Q” que escoa no canal determina uma curva de energia. Assim, uma dada profundidade “yi” pode ser crítica, subcrítica ou supercrítica dependendo da vazão transitante no canal.
Universidade Federal de Juiz de Fora - UFJF Faculdade de Engenharia Departamento de Engenharia Sanitária e Ambiental – ESA Prof. Homero Soares Seja um canal de seção e vazão constantes com declividade variável Declividade Crítica Análise:Aumentando-se a declividade do canal, o valor de y diminui e vice-versa. Em conseqüência, a ocorrência de um dos regimes fica condicionada à declividade do canal. Para I = Ic Declividade crítica, o regime é crítico Para I < Ic O regime é subcrítico Para I > Ic O rebime é supercrítico