1.18k likes | 4.52k Views
Fisiología Renal. Nefrología. Fimbres Barrón Arturo Gastelum Rosas Emmanuel Moreno Bravo Alejando Gutiérrez Gil Mario Humberto Morales Salas Denys Rey. Hermosillo, Sonora a 20 de Agosto de 2010. Formación de la orina, filtración glomerular, flujo sanguíneo renal y su control.
E N D
Fisiología Renal Nefrología Fimbres Barrón Arturo Gastelum Rosas Emmanuel Moreno Bravo Alejando Gutiérrez Gil Mario Humberto Morales Salas Denys Rey Hermosillo, Sonora a 20 de Agosto de 2010
Formación de la orina, filtración glomerular, flujo sanguíneo renal y su control. Arturo Fimbres
Funciones del riñón en la homeostasis Excreción de productos metabólicos Regulación de equilibrio hídrico Regulación de la osmolalidad Regulación de la presión arterial Regulación acido base Secreción, metabolismo y excreción hormonal Gluconeogenia Arturo Fimbres
Anatomía fisiológica de los riñones • Organización general de los riñones y la vía urinaria: Arturo Fimbres
Irrigación renal: Arturo Fimbres
La nefrona: Unidad funcional del riñón. Arturo Fimbres
Micción • Anatomía fisiológica y conexiones nerviosas de la vejiga: Arturo Fimbres
Transporte de orina desde el riñón hasta los uréteres y la vejiga: • Las contracciones peristálticas en el uréter se potencian con la estimulación parasimpática y se inhiben con la estimulación simpática… Arturo Fimbres
Reflejo miccional • “Autorregenerativo” • aumento rápido de la presión. • Presión mantenida. • Retorno de la presión al estado basal. • Facilitación o inhibición de la micción por el encéfalo: • Centros facilitadores e inhibidores : Protuberancia. • Centros localizados en la corteza cerebral Arturo Fimbres
Formación de orina: resultado del filtrado glomerular, la reabsorción tubular y la secreción tubular. Arturo Fimbres
Manejo renal de cuatro sustancias hipotéticas: Arturo Fimbres
Filtrado glomerular • El filtrado glomerular carece de proteínas y elementos celulares. • El FG es del 20% del flujo plasmático renal. • FG: 125 ml/min o 180 l/dia. Arturo Fimbres
Determinantes del FG • FG= Kfx Presión de filtración neta. Arturo Fimbres
El aumento del coeficiente de filtración capilar glomerular incrementa el FG. • El FG de los dos riñones es de unos 125ml/min • La presión de filtración neta 10 mm Hg. • Kf= FG/presion de filtración neta. Arturo Fimbres
Flujo sanguíneo renal • 1100 ml/min • Presión de la arteria renal 3-4 mm Hg • La corteza renal recibe la mayor parte del flujo sanguíneo total. • La medula renal tiene solo el 1-2% del flujo sanguíneo renal total. Arturo Fimbres
Control fisiológico de la FG y del flujo sanguíneo • Presión coloidosmotica y presión hidrostática glomerular. • Acción de la epinefrina y norepinefrina • Angiotensina II • Oxido nítrico Arturo Fimbres
Autorregulación del FG y del flujo sanguíneo • FG 180l/dia y la reabsorción tubular 178.5 l/dia. • La reducción del NaCl2 en la macula densa dilata las arteriolas eferentes y aumenta la liberación de renina. Arturo Fimbres
FORMACIÓN DE LA ORINA POR LOS RIÑONES: PROCESAMIENTO TUBULAR DEL FILTRADO GLOMERULAR Reabsorción Secreción Excreción urinaria = Filtración glomerular – Reabsorción tubular + secreción tubular Alejandro Moreno Bravo
La filtración glomerular carece de selectividad; mientras que la reabsorción tubular es muy selectiva • Glucosa y aminoácidos • Iones (Na, Cl, HCO3) Filtración = FG x concentración plasmática • La intensidad con que cada sustancia se filtra se calcula:
La reabsorción tubular comprende mecanismos pasivos y activos Se requiere que la sustancia sea trasportada 1 • Transporte activo y pasivo • Agua y solutos: • Vía transcelular • Vía paracelular 1 2 2 Ultrafiltración Mediado por fuerzas hidrostáticas y coloidosmóticas En el caso de la glucosa se produce un transporte activo secundario en la membrana luminal. Difusión facilitada en la membrana basolateral
Transporte máximo Transporte activo, sirve para reabsorber proteínas y moléculas grandes principalmente en el túbulo proximal IMAGEN • Pinocitosis Límite de la intensidad con la que las sustancias se pueden transportar. Se debe a la saturación de los sistemas de transporte cuando la cantidad de soluto que llega al túbulo (carga tubular) supera la capacidad de dicho sistema. Ejm: La glucosa
Filtración = FG x concentración plasmática En el adulto, el transporte máximo de glucosa es alrededor de 375 mg/min, mientras que la carga filtrada de glucosa es de unos 125 mg/min Filtración = 125 ml/min x 1 mg/ml = 125 mg/min Sustancia que se reabsorben activamente por los túbulos Sustancias que se secretan de forma activa por los túbulos
Reabsorción y secreción a lo largo de diferentes partes de la nefrona • 65 % de Na y H2O y algo menos de Cl (mecanismo activo y pasivo) • Características celulares especiales Reabsorción en el túbulo proximal Metabolismo alto Numerosas mitocondrias Borde en cepillo extenso Canales intracelulares Co – transporte y Contra - transporte
Concentraciones de solutos a lo largo del túbulo proximal • Sustancias que se secretan por el túbulo proximal: • Ácidos y bases orgánicos como las sales biliares, oxalato., urato y catecolaminas • Fármacos y toxinas • Ácido para-aminohipúrico (90 %)
Transporte de solutos y agua en el asa de Henle 3 segmentos con funciones diferente: • Segmento descendente fina • Segmento ascendente fino • Segmento ascendente grueso Muy permeable al agua, la mayoría de solutos (urea y sodio). Reabsorción del 20% de H2O filtrada Reabsorción del 25 % del Na, Cl y K Transporte activo H2O
Túbulo distal • En la primera mitad de reabsorbe el 5 % de Na, Cl y K Es impermeable al agua y urea • La segunda mitad y el túbulo colector tienen características funcionales similares
Conducto colector medular • Lugar final del procesamiento de la orina • Se reabsorbe 10% del H2O y Na filtrados • Posee 3 características fundamentales • La permeabilidad al agua esta determinada por la concentración de ADH • Permeabilidad a la urea • Participa en la regulación del equilibrio ácido-base mediante la secreción de iones H contra un gradiente de concentración
Efecto de la presión arterial sobre la diuresis: natriuresis por presión y diuresis por presión Control Hormonal de la reabsorción tubular • La aldosterona aumenta la reabsorción de Na y la secreción de K • Actúa sobre las células principales del túbulo colector cortical • Estimula la bomba ATPasa de Na-K • Enfermedad de Addison • Sx de Conn Aldosterona Angiotensina II • Aumenta la reabsorción de Na y de H2O mediante 3 mecanismos • Estimula la secreción de aldosterona • Contrae las arteriolas eferentes • Estimula directamente la reabsorción de Na en los túbulos proximales, asas de Henle , túbulos distales, y túbulos colectores
ADH • Aumenta la reabsorción de agua • Aumenta la permeabilidad del epitelio del túbulo distal, túbulo colector, y conducto colector Péptido natriurético auricular • Reduce la reabsorción de Na y H2O • Secretadas por células de las aurículas cardiacas • Aumenta la excreción urinaria • Normaliza el volumen sanguíneo
REGULACION DE LA OSMOLARIDAD y LA CONCENTRACION DE SODIO EN EL LIQUIDO EXTRACELULAR Gastelum Rosas Emmanuel
FORMACIÓN DE ORINA DILUIDA -Exceso de agua y osmolaridad disminuida 50mOsm/L
FORMACIÓN DE ORINA CONCENTRADA 1200mOsm/L
VOLUMEN URINARIO OBLIGATORIO Diariamente se excretan 600mOsm/L Capacidad máxima de concentración: 1200mOsm/L (600mOsm/L)/(1200moSm/L)= 0.5L/dia
CONCENTRACIÓN DE SOLUTOS EN LA MÉDULA RENAL DETERMINADA POR: -Iones desde el asa de Henle hacia el intersticio -Iones desde el túbulo colector -Urea desde los túbulos colectores -Poca difusión de agua.
INTERSTICIO HIPEROSMOTICO Diferencia 200
TÚBULO DISTAL Y TÚBULOS COLECTORES –ORINA CONCENTRADA ABSORCIÓN DE AGUA POR LA ANTIDUIRETICA
LA UREA Y LA HIPEROSMOLARIDAD DEL INTERSTICIO LA UREA CONTRIBUYE A LA HIPEROSMOLARIDAD EN PRECENCIA DE ANTIDIURETICA CONCENTRAR ORINA
VASOS RECTOS MANTIENEN LA HIPEROSMOLARIDAD FLUJO SANGUINEO RENAL BAJO
CONTROL DE LA OSMOLARIDAD Y DE LA CONCENTRACIÓN DE SODIO -Sistema de retroalimentación osmoreceptores- ADH -Mecanismo de la sed
SED EN CONTROL DE OSMOLARIDAD Y CONCENTRACIÓN DE SODIO -HIPOTENSIÓN -HIPOVOLEMIA -SEQUEDAD DE LA BOCA Y LA MUCOSA DEL ESTOMAGO
Regulación renal del potasio, el calcio, el fosfato y el magnesio. Mario Humberto Gutiérrez Gil
Regulación de la excreción y concentración de potasio en el liquido extracelular • La regulación de la excreción de potasio tiene lugar sobre todo por secreción de los túbulos distales y colectores. • La secreción de potasio se produce en las células principales de la porción distal de los túbulos distales y de los túbulos colectores corticales
Factores principales que controlan la secreción de potasio: • Aumento de la concentración extracelular de potasio, que incrementa su secreción. • Aumento de la concentración de aldosterona, que incrementa la secreción de potasio. • Aumento del flujo tubular, que incrementa la secreción de potasio. • Aumentos bruscos de la concentración de iones de hidrogeno, que reducen la secrecion de potasio.
Control de la excreción renal del calcio y de su concentración. • La hormona paratiroidea es un regulador importante de la captación y liberación del calcio por los huesos. • La PTH controla la excreción renal del calcio. • Estimulando la resorción ósea • Estimulando la activación de la vitamina D • Potenciando la reabsorción de calcio en los túbulos renales.
Integración de los mecanismos renales de control del liquido extracelular • En condiciones de estado de equilibrio, existe un balance entre la excreción y el porte de sodio. • La excreción de sodio, esta controlada por la TFG o reabsorción tubular. • Equilibrio glomerulotubular • Retroalimentación de la macula densa.
Natriuresis por presión • Es un componente clave de retroalimentación renal y líquidos corporales. • Leve incremento de volumen sanguíneo y de liquido extracelular, por aumento de aporte de líquidos. • Aumento de llenado circulatorio medio y gasto cardiaco. • Aumento de la Presión Arterial, por tanto, la diuresis a través de la natriuresis por presión. • Aumento de la excreción de líquidos que equilibra el mayor aporte.