290 likes | 656 Views
momenti inercija. 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA. STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA.
E N D
momenti inercija 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA
STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog, od površine poprečnog presjeka, tako kod savijanja štapa važnu ulogu imaju aksijalni i centrifugalni momenti inercije poprečnog presjeka štapa s obzirom na os kroz težište presjeka, a pri uvijanju polarni moment inercije s obzirom na težište presjeka.
STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA U statici krutih tijela pri određivanju težišta statičkim momentima ravne figure površine F s obzirom na bilo koje osi x i ynazivamo dvostruke integrale: Njihova je dimenzija [cm3].
STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Označimo li koordinate težišta S figure u sustavu 0xy sa x0i y0, možemo prema Varignon-ovom teoremu napisati: odatle dobivamo koordinate težišta Za težišne osi xsi ystada je:
STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Momenti inercije ravne plohe površine F (geometrijski momenti inercije, momenti površina drugog reda, kvadratni momenti površina) s obzirom na osi x i y (aksijalni momenti inercije) određeni su izrazima:
STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Polarnim momentom inercije ravne plohe površine F, s obzirom na pol Onazivamo dvostruki integral: Kako je , izraz za polarni moment inercije je:
STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Zamislimo da smo osi xi y(b) zakrenuli oko nepomične tačke 0,tako da su one opet međusobno okomite. Tada će suma Ix + Iybiti opet jednaka konstantnoj vrijednosti Ip.Prema tome, suma Ix + Iy ne zavisi od položaja ishodišta 0 koordinatnog sustava. Algebarska suma aksijalnih momenata inercije Ix i Iyravne plohe, s obzirom na dvije proizvoljne međusobno okomite osi x i yšto prolaze kroz istu točku, konstantna je i jednaka polarnom momentu inercije Ips obzirom na os (z), koja prolazi kroz točku 0 i stoji okomito na ravninu plohe.
STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Centrifugalnim (devijacionim) momentom inercije Ixyravne figure površine F, s obzirom na dvije međusobno okomite osi što leže u ravnini figure (b), nazivamo dvostruki integral: Iz (c) može se zaključiti da ako je jedna od osi, os simetrije površine F, onda je centrifugalni moment jednak nuli. To je zato što je svakoj vrijednosti izraza xydFs pozitivnim predznakom pridružen izraz jednake apsolutne vrijednosti ali sa suprotnim predznakom.
STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Aksijalni, polarni i centrifugalni moment inercije imaju dimenziju [L4] i obično se mjere u cm4 ili mm4 (u brodogradnji i pomorstvu pri proračunu stabiliteta broda mjere se u m4). Te veličine igraju važnu ulogu u nauci o čvrstoći, a napose u teoriji savijanja i uvijanja. Aksijalni i polarni momenti inercije uvijek su pozitivni, dok centrifugalni momenti mogu biti pozitivni, negativni ili jednaki nuli.
TEOREMI O MOMENTIMA INERCIJE 1. PRAVILO O ZBRAJANJU MOMENATA INERCIJE Ako je ravna ploha sastavljena od više dijelova, onda je njezin moment inercije, s obzirom na os x koja leži u ravnini plohe, jednak algebarskoj sumi momenata inercije pojedinih dijelova s obzirom na istu os (a), što možemo izraziti ovako
TEOREMI O MOMENTIMA INERCIJE 2. PRAVILO O POMAKU DIJELOVA PRESJEKA Moment inercije presjeka s obzirom na bilo koju os ne će se promijeniti ako cijeli presjek ili pojedine njegove dijelove pomaknemo u pravcu paralelnom s tom osi.
TEOREMI O MOMENTIMA INERCIJE Na slici se vidi da se paralelnim premještajem sastavnih dijelova pravokutnog okvira mogu dobiti profili različita oblika. Kako se pri takvom premještanju ne mijenjaju ni veličine tih dijelova niti njihove udaljenosti od osi x, to znači da se ne mijenja ni aksijalni moment tih profila s obzirom na istu os x. Za sve profile na slici vrijedi izraz za aksijalni moment inercije s obzirom na os x:
TEOREMI O MOMENTIMA INERCIJE 3. PRAVILO O PRIJENOSU MOMENTA INERCIJE Moment inercije presjeka s obzirom na os x', koja je paralelna s osi kroz težište presjeka, jednak je momentu inercije tog presjeka s obzirom na težišnu os, plus umnožak iz površine presjeka i kvadrata udaljenosti osi x' od težišne osi (Steiner-ovo pravilo).
TEOREMI O MOMENTIMA INERCIJE Dokaz Steiner-ovog pravila Moment inercije površine prema slici u odnosu na os x’ može se odrediti prema relaciji:
TEOREMI O MOMENTIMA INERCIJE Prvi član relacije predstavlja moment inercije u odnosu na paralelnu os kroz težište presjeka xs. Drugi član izraza je statički moment površine u odnosu na vlastito težište te je prema definiciji jednak nuli.
TEOREMI O MOMENTIMA INERCIJE Treći član izraza što znači da je ukupni aksijalni moment inercije u odnosu na os x’ određen izrazom što odgovara definiciji Steiner-ovog pravila.
TEOREMI O MOMENTIMA INERCIJE Primjer: Proračun momenta inercijeza pravokutni presjek za osi kroz težište presjeka te proračun momenta inercije za os x’:
TEOREMI O MOMENTIMA INERCIJE Moment inercije pravokutnog presjeka prema slici u odnosu na os x koja prolazi kroz težište presjeka S može se odrediti kako slijedi:
TEOREMI O MOMENTIMA INERCIJE Analogno vrijedi izraz za moment inercije s obzirom na os y koja prolazi kroz težište presjeka S: Aksijalne momente inercije u odnosu na osi x’ i y’ određujemo prema Steiner-ovom pravilu:
TEOREMI O MOMENTIMA INERCIJE i analogno vrijedi za os y’
TEOREMI O MOMENTIMA INERCIJE Polarni moment inercije s obzirom na težište S je: Kako se radi o simetričnom presjeku centrifugalni moment inercije jednak je nuli.
TEOREMI O MOMENTIMA INERCIJE Osim momenata inercije, u primjeni je često važan i moment otpora presjeka definiran relacijom: gdje je: - Wxaksijalni moment otpora presjeka s obzirom na os kroz težište, - ejenajveća udaljenost konture presjeka od osi kroz njegovo težište, - dimenzija momenta otpora je [cm3, mm3].
TEOREMI O MOMENTIMA INERCIJE 4. CENTRIFUGALNI MOMENTI INERCIJE Centrifugalni moment inercije presjeka s obzirom na dvije međusobno okomite osi, koje su paralelne s osima kroz težište presjeka, jednak je centrifugalnom momentu inercije toga presjeka s obzirom na težišne osi, plus umnožak iz površine presjeka i razmaka između oba para paralelnih osi.
TEOREMI O MOMENTIMA INERCIJE Izpravila koja određuju promjene momenata inercije pri translaciji koordinatnog sustava,može se zaključiti da: • a) Od svih momenata inercije ravne plohe s obzirom na paralelne osi najmanju vrijednost ima moment inercije s obzirom na os što prolazi kroz težište plohe. • b) Momenti inercije ravne plohe s obzirom na dvije paralelne osi, koje su jednako udaljene od težišta, imaju jednake vrijednosti, • c) Polarni moment inercije ravne plohe ima najmanju vrijednost ako se pol nalazi u težištu plohe, • d) Za centrifugalni moment ne postoji minimum.