1 / 15

ANALIZA WSPÓŁZALEŻNOŚCI CECH JAKOŚCIOWYCH

ANALIZA WSPÓŁZALEŻNOŚCI CECH JAKOŚCIOWYCH.

Download Presentation

ANALIZA WSPÓŁZALEŻNOŚCI CECH JAKOŚCIOWYCH

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ANALIZA WSPÓŁZALEŻNOŚCI CECH JAKOŚCIOWYCH W wielu badaniach gromadzimy dane będące liczebnościami. Na przykład możemy klasyfikować chorych w badanej próbie do różnych kategorii pod względem wieku, płci czy natężenia choroby, czyli kilku badanych cech. Możemy je przedstawić w postaci tzw. tabeli wielodzielczej.

  2. Tab.1. Tabela wielodzielcza (kontyngencji).

  3. Tab.2. Przykład tabeli wielodzielczej

  4. Tabele wielodzielcze (kontyngencji). • Pierwszym krokiem jest przedstawienie zebranych danych indywidualnych w postaci tabeli wielodzielczej (kontyngencji). Wymaga to zliczenia jednostek w odpowiednich komórkach tabeli.Zliczanie to bez użycia komputera jest żmudne, zwłaszcza dla dużej liczby przypadków. • Tabele wielodzielcze stanowią podstawę do obliczania pozostałych statystyk określających siłę związku. Tabela wielodzielcza przedstawia rozkład obserwacji ze względu na kilka cech jednocześnie.Załóżmy, że dysponujemy n obserwacjami dla jakościowej cechy X (posiadającej kategorie X1, X2, ... Xk) i jakościowej cechy Y (o kategoriach Y1, Y2, ...Yp) (tab. 1). Liczebności nij określają liczbę elementów próby, dla których cecha X ma wariant Xi i jednocześnie cecha Y - wariant Yj. Tablica wielodzielcza pokazuje więc określony łączny rozkład obu cech. Liczebności w ostatnim wierszu i w ostatniej kolumnie nazywamy empirycznymi, odpowiednio cechy Y i cechy X. Na przykład, chcąc ocenić wpływ używek (papieros, kawa, alkohol) na pewną chorobę, zebraliśmy dane na temat ich używania w grupie 90-osobowej. Zastosowano podział na 4 kategorie: nigdy (tzn. nie używano nigdy), niewiele (używano w małych ilościach), średnio (używano w średnich ilościach) i dużo (używano w dużych ilościach).

  5. Zliczając otrzymane dane dla papierosów i płci, otrzymamy następującą tabelę wielodzielczą (tab. 3)

  6. Tabela 3 Widać wyraźną przewagęmężczyzn w grupie palących dużą lub średnią liczbę papierosów, natomiast około 3-krotnie więcej kobiet niż mężczyzn nigdy nie paliło. Informacje byłyby bogatsze po dołączeniu danych odsetkowych. Odsetki wylicza się względem: ostatniej rubryki (płci), ostatniego wiersza (liczby wypalanych papierosów) oraz całkowitej liczby respondentów. Następny etap analizy statystycznej tak zebranych danych to próba weryfikacji hipotezy, że dwie jakościowe cechy w populacji są niezależne.

  7. Współzależność cech– cechy jakościowe

  8. Najczęściej stosowanym narzędziem jest test chi-kwadrat.Został on opracowany przez Karla Pearsona w 1900 roku i jest metodą, dzięki której można się upewnić, czy dane zawarte w tabeli wielodzielczej dostarczają wystarczającego dowodu na związek tych dwóch zmiennych. Test chi-kwadrat polega na porównaniu liczebności zaobserwowanych z oczekiwanymi przy założeniu hipotezy o braku związku między tymi dwiema zmiennymi. Liczebności (częstości) oczekiwane obliczamy, wykorzystując liczebności brzegowe(z tablicy wielodzielczej) według następującego wzoru: Wówczas hipotezę o tym, że cechy X i Y są niezależne, możemy zweryfikować testem według następującego schematu:

  9. Weryfikacja hipotezy zerowej: H0: cechy X i Y są niezależne Wobec hipotezy alternatywnej: H1: cechy X i Y są zależne Do weryfikacji hipotezy stosujemy statystykę: Otrzymaną wartość należy porównać z wartością krytyczną chi-kwadrat o (k - 1)·(p - 1) stopniach swobody

  10. Na przykład: zapytano 260 osób o to, czy korzystają z bezpłatnych darmowych badań profilaktycznych dowolnego typu. Zebrane dane przedstawiono w wielodzielczej tabeli 4. Czy istnieje zależność między korzystaniem z takiej oferty i miejscem zamieszkania? Tabela 4

  11. Wyliczymy liczebności oczekiwane.Wyniki obliczeń pozostałych liczebności oczekiwanych przedstawiono w tabeli w nawiasach obok wartości obserwowanych. A jak się to liczy? Mnożymy sumę z wiersza i sumę z kolumny (patrzymy po brzegach), następnie dzielimy przez liczbę wszystkich elementów (tu 260).

  12. I stąd jest

  13. Następny krok to porównanie liczebności empirycznych i teoretycznych, a końcowym efektem jest obliczona wartość statystyki chi-kwadrat. A jak się to liczy? We wnętrzu tabeli: liczebność empiryczna minus teoretyczna, podnosimy do kwadratu, dzielimy przez teoretyczną.

  14. Tak więc wartość obliczona chi-kwadrat = 12,25 Wartość odczytana wynosi (dla poziomu istotności 0,05 i (3–1)*(2–1)) stopni swobody = 5,991 Wartość obliczona > wartość krytyczna (odczytana) 12,25 > 5,991 W takiej sytuacji formułujemy wniosek końcowy: Istnieje zależność między miejscem zamieszkania a częstotliwością korzystania z badań profilaktycznych. A teraz szukamy największych rozbieżności między liczebnościami empirycznymi i teoretycznymi, np.:

  15. Zauważmy, że mieszkańcy wsi częściej przyznawali, ze nigdy nie korzystali z badań profilaktycznych (63 wobec 50,71). Mieszkańcy miast w większym stopniu niż można się było spodziewać przyznawali, że często korzystają z badań profilaktycznych (40 wobec 30,46). Zauważmy, że bardzo duże wartości chi-kwadrat obliczonego oznaczają dużą różnicę pomiędzy częstościami obserwowanymi a oczekiwanymi. Są one dowodem istnienia zależności. Przeciwnie mała wartość (zwłaszcza bliska 0) nie daje dowodu na istnienie korelacji.

More Related