1 / 3

QUADRATI LATINI

da Soliani L., Statistica applicata alla ricerca biologica e ambientale, UNI. NOVA Parma, 2003. QUADRATI LATINI

tirza
Download Presentation

QUADRATI LATINI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. daSoliani L., Statistica applicata alla ricerca biologica e ambientale, UNI. NOVA Parma, 2003 QUADRATI LATINI Analizzare contemporaneamente 2 fattori di variazione a p livelli nel disegno sperimentale a blocchi randomizzati richiede p2osservazioni. Con le stesse modalità di programmazione, poiché ogni livello di un fattore deve incrociare tutti i livelli degli altri fattori, un esperimento con 3 fattori di variazione a p livelli richiede p3osservazioni o repliche. In un esperimento con 3 fattori, ognuno a 5 livelli, si richiedono 53 = 125 dati. All’aumentare dei fattori, si ha un rapido incremento delle misure che occorre raccogliere; poiché ognuna ha un costo e richiede tempo, sono stati sviluppati metodi che permettono di analizzare contemporaneamente più fattori con un numero minore di dati. Il disegno sperimentale a quadrati latini permette di analizzare contemporaneamente 3 fattori a p livelli con sole p2osservazioni: con 3 fattori a 5 livelli sono sufficienti 25 dati. A questo vantaggio, rappresentato da un risparmio di materiale e quindi di denaro e di tempo necessari all’esperimento, si associa lo svantaggio di una maggiore rigidità dell’esperimento stesso: tutti e tre i fattori devono avere lo stesso numero di livelli.

  2. Per riportare in tabella i risultati di un esperimento a quadrati latini, due fattori vengono rappresentati nelle righe e nelle colonne, mentre il terzo, di solito il fattore principale, è rappresentato nelle celle formate dall’incrocio tra riga e colonna. In esse, il terzo fattore è distribuito in modo casuale, ma ordinato: deve comparire una volta sola sia in ogni riga che in ogni colonna. In un quadrato latino (che ha tre criteri di classificazione), la randomizzazione è ottenuta permutando i trattamenti nello schema ordinato delle righe e delle colonne. A questo scopo esistono tabelle di distribuzione casuale, da utilizzare nel caso di più esperimenti a quadrati latini con schemi differenti. In un disegno sperimentale a quadrati latini, il modello additivo dell’analisi della varianza richiede che la generica osservazione Xijk, appartenente alla riga i-esima, alla colonna j-esima e al trattamento k-esimo, sia data da: Xijk = μ + αi + βj + γk + Rijk

  3. ESEMPIO. Si intende confrontare la produttività di 5 varietà (A, B, C, D, E) di sementi in rapporto al tipo di concime (1, 2, 3, 4, 5) e ad un diverso trattamento del terreno (I, II, III, IV, V). A questo scopo, si è diviso un appezzamento quadrato di terreno in 5 strisce di dimensioni uguali, nelle quali è stata fatta un'aratura di profondità differente; perpendicolarmente a queste, sono state tracciate altre 5 strisce, che sono state concimate in modo diverso.

More Related