1 / 65

Universidade Tecnológica Federal do Paraná Mestrado Profissional em Tecnologia de Alimentos

Universidade Tecnológica Federal do Paraná Mestrado Profissional em Tecnologia de Alimentos Análise Estatística de Experimentos Profª Sheila Regina Oro. EXPERIMENTOS FATORIAIS. Francisco Beltrão Agosto, 2013. Experimentos Fatoriais.

tom
Download Presentation

Universidade Tecnológica Federal do Paraná Mestrado Profissional em Tecnologia de Alimentos

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Universidade Tecnológica Federal do Paraná Mestrado Profissional em Tecnologia de Alimentos Análise Estatística de Experimentos Profª Sheila Regina Oro EXPERIMENTOS FATORIAIS Francisco Beltrão Agosto, 2013

  2. Experimentos Fatoriais • Projeto experimental em que os ensaios são realizados de forma proposital e com causas controladas (fatores). • É necessário o controle das causas para que as respostas obtidas nos ensaios sejam devidas somente aos efeitos dos tratamentos realizados e não a outras causas. • O pesquisador deve considerar a presença de efeitos “não controláveis” (variação ao acaso). 2

  3. Experimentos Fatoriais • Cada nível de um fator é ensaiado com todos os níveis dos outros fatores, para testar principalmente se há diferença no valor esperado da resposta entre os níveis de cada fator e se há interação entre os fatores. • Fator: variável independente • Ex.: solventes, aditivos, temperatura • Níveis: • Ex.: ausência ou presença; -1, controle, +1; 50ºC , 75ºC , 100ºC 3

  4. Exemplo 1: Solventes • Um pesquisador está interessado em estudar a extração de pigmentos naturais, com aplicação como corante em alimentos. Numa primeira etapa tem-se a necessidade de escolher o melhor solvente extrator dentre os seguintes: E50, EAW, MAW, E70, M1M. A escolha do(s) melhor(es) solventes foi realizada através da medida da absorbância de um pigmento natural do fruto de baguaçú. 4

  5. Exemplo 1: Solventes • Fator: solvente • Níveis: 5 (E50, EAW, MAW, E70, M1M) • Repetições: 5 • Tratamentos: 5 • Ensaios: 25 (Repetições x Tratamentos) • Unidade experimental:10 gramas de polpa • Casualização: a partir de 1kg de polpa, foram retiradas as amostras de 10g para a aplicação dos tratamentos, numa ordem aleatória. 5

  6. ANOVA – 1 Fator 6

  7. Modelo – 1 Fator Efeito de cada nível Média geral Erro Resposta nível i repetição j Suposições: 1) os erros aleatórios são independentes; 2) os erros aleatórios são normalmente distribuídos; 3) os erros aleatórios tem média 0 (zero) e variância 2; 4) a variância, 2, deve ser constante para todos os níveis do fator. 5) as observações são adequadamente descritas pelo modelo

  8. 1 Fator – Efeito Fixo • Níveis do fator selecionados pelo pesquisador • Hipóteses: H0: 1= 2=...= a H1: i j para pelo menos um par (i,j) 1-3.1 Decomposição da soma de quadrados total Corrigida para a média 8 SSTotal= SSTratamentos+ SSErro

  9. 1 Fator – Efeito Fixo Decomposição da soma de quadrados total SSTotal = SSTratamentos + SSErro 9

  10. 1 Fator – Efeito Fixo Variância do tratamento i Variância combinada dos a tratamentos 10 10 10 10

  11. 1 Fator – Efeito Fixo Variância entre tratamentos Graus de liberdade SSTotal : an-1 SSTratamentos : a-1 SSerro : a(n-1) 11 11 11 11

  12. 1 Fator – Efeito Fixo Quadrados médios Esperança dos quadrados médios 12

  13. 1 Fator – Efeito Fixo Teste: Análise Estatística • Critério para rejeição de H0: F0 > F,a-1,N-a valor p < 5% • valor-p: probabilidade de rejeitar a hipótese nula devido a variações aleatórias. 13

  14. 1 Fator – Efeito Fixo Valor p N = an 14

  15. 1 Fator – Efeito Fixo Teste de Tukey dms = diferença mínima significativa qα; r; gl_erro: valor tabelado QMerro: quadrado médio do resíduo (ANOVA) r: número de repetições de cada tratamento

  16. Exemplo 1: Solventes Tabela 1.1 Dados de absorbância de cada um dos solventes 16

  17. Exemplo 1: Solventes • Há suspeita de que o tipo de solvente esteja afetando a absorbância. • Distribuições assimétricas. • Valor discrepante observado para o solvente E70. 17

  18. Exemplo 1: Solventes • Minitab • Stat – Basic Statistics – Display Descriptive Statistics Total Variable Count Mean StDev CoefVar Minimum Median Maximum Range E50 5 0,5393 0,0266 4,94 0,5096 0,5553 0,5623 0,0527 EAW 5 0,5669 0,0154 2,72 0,5436 0,5660 0,5860 0,0424 MAW50,44960,03728,280,40940,43210,50100,0916 E70 5 0,6363 0,0656 10,31 0,5826 0,6143 0,7498 0,1672 M1M 5 0,1968 0,0238 12,11 0,1651 0,1954 0,2249 0,0598 18

  19. Exemplo 1: Solventes • Minitab • Stat – ANOVA – One-Way (Unstacked) – Comparisons – Tukey’s • O teste da ANOVA confirma que o tipo de solvente afeta a absorbância. • F5%;4;20 = 2,87 • Valor-p < 5% • 95,29% da variância total é explicada pela reta obtida do modelo de regressão linear 19

  20. Exemplo 1: Solventes • O teste de Tukey apontou que os solventes que não diferem entre si quanto aos valores esperados de absorbância são: • E50 e EAW • E70 e EAW • Todos os demais diferem significativamente entre si. • A diferença mínima significativa (dms) calculada foi de 0,0718783. 20

  21. 1 Fator – Efeito Fixo Qual teste de comparações múltiplas usar? O LSD é eficiente para detectar diferenças verdadeiras nas médias se ele for aplicado apenas depois do teste F da ANOVA, se significativo a 5%. Idem para o Duncan. Estes métodos não contém o erro tipo I (erro geral ou experimentwise error). Como o teste de Tukey controla este erro, ele é o preferido pelos estatísticos. Se a comparação for com um grupo controle, utiliza-se Dunnett. 21

  22. 1 Fator – Efeito Fixo Estimação dos parâmetros do modelo Estimativas da média geral e dos efeitos dos tratamentos: Estimativa pontual de i: dado i= + i, temos: 22

  23. 1 Fator – Efeito Fixo Um intervalo de confiança para i é dado por: Intervalo de confiança para a diferença entre quaisquer duas médias i-j: 23

  24. Exemplo 1: Solventes Estimativas da média geral e dos efeitos dos tratamentos: 24

  25. Exemplo 1: Solventes Um intervalo de confiança para 4 é dado por: Intervalo de confiança para a diferença entre as médias 3 e 4: 25

  26. 1 Fator – Efeito Fixo Dados desbalanceados: O número de observações dentro de cada tratamento é diferente. 26

  27. 1 Fator – Efeito Fixo Diagnóstico do Modelo Verificar se as pressuposições básicas do modelo são válidas fazendo a análise de resíduos. Define-se o resíduo da ij-ésima observação como: A suposição de normalidade Vamos usar o gráfico normal de probabilidades: sob normalidade dos erros, estes devem seguir uma reta de 45o. 27

  28. Exemplo 1: Solventes • Alguns valores negativos dos resíduos (mais extremos) deveriam ser maiores; alguns valores positivos dos resíduos deveriam ser menores, com exceção do último valor que deveria ser maior. • O gráfico indica que os resíduos (erros) podem ter distribuição normal. • Existe um resíduo que é muito maior que os demais, este valor é denominado outlier. Deve-se fazer uma investigação sobre esse valor. Só eliminar um outlier se tiver uma justificativa não estatística, caso contrário, fazer duas análises: uma com e outra sem o outlier. Usar métodos não paramétricos. Transformação. • Se algum resíduo padronizado (dij) for maior do que |3| ele é um outlier. 28

  29. Exemplo 1: Solventes Gráfico de resíduos no tempo Usado para verificar se existe correlação entre os resíduos. Uma tendência de ter resíduos positivos e negativos indica uma correlação positiva. Isto implica que a suposição de independência dos erros foi violada. Isto é um problema sério, e até difícil de resolver. Se possível evitar este problema. A casualização adequada pode garantir a independência. 29

  30. Exemplo 1: Solventes Gráfico dos resíduos versos valores preditos A distribuição dos pontos é aleatória. Útil para verificar se as variâncias são heterogêneas (forma de megafone). Devido à presença de um outlier as variâncias podem não ser homogêneas. Na presença de heterogeneidade de variâncias é usual aplicar uma transformação nos dados (Box-Cox). Pode-se usar os testes não-paramétricos (Kruskal-Wallis). 30

  31. Exemplo 1: Solventes Transformação Box-Cox Usada para homogeneizar as variâncias. As conclusões são realizadas para os dados transformados. 31

  32. Exemplo 1: Solventes Teste de Levene 1) Calcular os resíduos da análise de variância; 2) Fazer uma análise de variância dos valores absolutos desses resíduos; 3) Se as variâncias são homogêneas, o resultado do teste F será não significativo. FV GL SQ QM F P Solventes 4 0,003576 0,000894 2,00 0,134 Error 20 0,008944 0,000447 Total 24 0,012519 Conclusão: Aceita-se a hipótese de que as variâncias são homogêneas, pois valor-p > 5%. 32

  33. ANOVA 2 Fatores • Fator A com i níveis e fator B com j níveis. • ij = diferentes combinações de níveis dos dois fatores (tratamentos). • kij = número de observações do tratamento. • Fatores A e B podem influir na variável dependente de forma isolada, denominados efeitos principais, e de forma combinada, efeito de uma combinação específica dos fatores A e B.

  34. ANOVA 2 Fatores • O teste de hipóteses para dois fatores A e B tem três hipóteses nulas: • H0 : Não há efeito principal do fator A • H0 : Não há efeito principal do fator B. • H0 : Não há combinação de efeitos. • H1 : Há efeito em cada um dos três casos.

  35. ANOVA 2 Fatores Efeito de cada nível do fator A Efeito de cada nível do fator B Modelo Média geral Efeito de cada nível da interação Cada observação da variável resposta Erro

  36. ANOVA 2 Fatores • Observações de cada célula ab: amostra aleatória de tamanho r; • Cada uma das ab populações é normalmente distribuída; • Todas as populações têm a mesma variância; • Os parâmetros , e satisfazem as condições: • e Suposições do modelo

  37. ANOVA 2 Fatores

  38. Exemplo 2: Antibiótico e Vitamina • Considere o experimento que visa estudar o efeito simultâneo do uso (ou não) de antibióticos e de vitamina B12 (ou não) no aumento de peso (kg) diário em suínos. Faça uma análise estatística do experimento com a finalidade de verificar se existe diferença estatisticamente significativa entre os tratamentos, adotando um nível de confiança de 95%. • Experimento: 2 fatores, 2 níveis e 3 repetições. • Tratamentos: 4 • Unidades experimentais: 12

  39. Exemplo 2: Antibiótico e Vitamina • A tabela a seguir indica os valores observados na amostragem. • - sem antibiótico (a0) • - com 40g de antibiótico (a1) • - sem vitamina B12 (b0) • - com 5mg de vitamina B12 (b1)

  40. Exemplo 2: Antibiótico e Vitamina • Nesse experimento vamos verificar os efeitos individuais do uso de antibiótico ou da vitamina B12 no aumento de peso dos suínos, além de estudar a interação desses dois fatores. • Fatores: Antibiótico (A) e Vitamina B12 (B); • Níveis: a0 (sem antibiótico) e a1 (com antibiótico); b0 (sem Vitamina B12) e b1 (com vitamina B12), respectivamente, adicionados a uma dieta básica de suínos.

  41. Exemplo 2: Antibiótico e Vitamina • Há suspeita de que os níveis de antibiótico e/ou vitamina influenciam o peso dos suínos. • Distribuições simétricas.

  42. Exemplo 2: Antibiótico e Vitamina

  43. Exemplo 2: Antibiótico e Vitamina MINITAB:/Stat/ANOVA/Two-way Conclusão: pelo menos duas médias de tratamentos diferem significativamente entre si quanto ao ganho de peso diário de suínos. Como a interação é significativa (valor-p < 5%), os fatores antibiótico e vitamina não atuam independentemente na variável resposta (peso).

  44. Exemplo 2: Antibiótico e Vitamina O que fazer agora? • Como a interação é significativa deve-se fazer o desdobramento da interação. • Além disso, como os dois efeitos principais são significativos deve-se estudar o comportamento de um fator dentro dos níveis do outro; • Caso apenas um dos efeitos principais fosse significativo, seria necessário estudar apenas o comportamento do fator não significativo dentro dos níveis do outro fator.

  45. EFEITO SIMPLES DE UM FATORMedida da variação que ocorre com a característica em estudo (peso, neste caso) correspondente às variações nos níveis desse fator, em cada um dos níveis do outro fator. Exemplo 2: Antibiótico e Vitamina

  46. EFEITO SIMPLES DE UM FATOR Exemplo 2: Antibiótico e Vitamina • Na ausência da vitamina existe uma diferença no peso diário dos suínos. A estimativa desta diferença é dada por • Somente o efeito do antibiótico prejudica o peso diário dos suínos.

  47. EFEITO SIMPLES DE UM FATOR Exemplo 2: Antibiótico e Vitamina • Quando se utiliza a dose de vitamina B12, também existe uma diferença no peso diário dos suínos. • A combinação do uso de antibiótico e vitamina favorece o peso diário dos suínos.

  48. EFEITO PRINCIPAL DE UM FATOR Exemplo 2: Antibiótico e Vitamina • Quanto mudou a variável resposta devido à mudança no nível do fator.

  49. Exemplo 2: Antibiótico e Vitamina • Efeito principal de A • A presença de antibiótico proporciona um aumento de 0,005kg no peso dos suínos; • Efeito principal de B • A presença de vitamina B12 proporciona um aumento de 0,215kg no peso dos suínos;

  50. Exemplo 2: Antibiótico e Vitamina

More Related